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Abstract
In the thesis, we explore reasoning about and handling of algebraic effects. Those

are computational effects, which admit a representation by an equational theory.

Their examples include exceptions, nondeterminism, interactive input and out-

put, state, and their combinations.

In the first part of the thesis, we propose a logic for algebraic effects. We

begin by introducing the a-calculus, which is a minimal equational logic with

the purpose of exposing distinct features of algebraic effects. Next, we give a

powerful logic, which builds on results of the a-calculus. The types and terms

of the logic are the ones of Levy’s call-by-push-value framework, while the rea-

soning rules are the standard ones of a classical multi-sorted first-order logic

with predicates, extended with predicate fixed points and two principles that de-

scribe the universality of free models of the theory representing the effects at

hand. Afterwards, we show the use of the logic in reasoning about properties of

effectful programs, and in the translation of Moggi’s computational λ-calculus,

Hennessy-Milner logic, and Moggi’s refinement of Pitts’s evaluation logic.

In the second part of the thesis, we introduce handlers of algebraic effects.

Those not only provide an algebraic treatment of exception handlers, but gen-

eralise them to arbitrary algebraic effects. Each such handler corresponds to a

model of the theory representing the effects, while the handling construct is in-

terpreted by the homomorphism induced by the universal property of the free

model. We use handlers to describe many previously unrelated concepts from

both theory and practice, for example CSS renaming and hiding, stream redirec-

tion, timeout, and rollback.
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Chapter 1

Introduction

1.1 Historical background

Few areas of computer science are as influential as the study of the λ-calculus,

whose results range from the purest theory to mainstream applications. It lead to

new fields such as domain theory [GHK+03]; it provided a base for most program

logics such as LCF [Sco93]; and it inspired functional programming languages

such as ML [MTHM97] or HASKELL [PJ03], which started as academic projects,

but matured and are becoming more and more popular and influential.

However, the main obstacle to the widespread adoption of the λ-calculus in

programming languages lies in the lack of treatment of computational effects

such as user interaction, memory management, runtime errors, and so on.

Many approaches tried to bring theory closer to practice, but usually fo-

cused on a single kind of effect. Examples are Hoare logic [Hoa69] for state

or Hennessy-Milner logic [HM85] for concurrency. Such specific approaches to

effects are double-edged: they do yield very elaborate results, for example proofs

of correctness of algorithms, but those results are almost impossible to combine

when one wants to treat more than one effect.

Then, in seminal work [Mog89], Moggi proposed a uniform representation of

all computational effects by monads [Mog91, BHM00]. This paved the way for

more general program logics, for example Pitts’s evaluation logic [Pit91], and

gave an elegant method to introduce computational effects to HASKELL, oth-

erwise a pure functional language. Still, with their encapsulation of effects,

monads abstract away from many valuable details, and combining monads for

different effects is a nuisance.

1



2 Chapter 1. Introduction

To account for the sources of effects, Plotkin and Power suggested the repre-

sentation of effects by equational theories [PP01, PP03, PP04]. Intuitively, each

occurrence of an effect can be seen as a branching point in the execution of a

program, with as many branches as there are possible outcomes of an effect.

Each source of an effect is then represented by an operation, whose arity is the

number of outcomes and whose arguments represent the branches. The prop-

erties of those sources are described by equations between terms built from the

corresponding operations.

For example, nondeterminism is represented by a binary operation, which

represents the nondeterministic choice, and by equations, which state its idem-

potency, commutativity, and associativity. With the notable exception of contin-

uations [FSDF93], almost all computational effects have such a representation,

and those we call algebraic effects.

So far, the approach proved to be successful: it gave an elegant denotational

semantics of effectful programs in terms of Lawvere theories [PP03], it demon-

strated how such representation induces the usual monadic one [PP02], and it

provided simple ways of combining effects [HPP06].

However, the approach lacked a logic, which would account for the algebraic

nature of effects, and was unsuccessful in providing a treatment of exception

handlers, which fail to be algebraic effects [PP03].

1.2 Aims of the thesis

The first aim of the thesis is to give a comprehensive and powerful logic of al-

gebraic effects. To capture the distinct features of effects, we first introduce a

minimal equational logic, and then expand it into a rich first-order logic with

predicates. To show the power of the resulting logic, we use it to derive proper-

ties of effectful programs, and to embrace other approaches by translating their

syntax into ours and deriving the translations of their axioms in our logic.

The second aim of the thesis is to give an algebraic treatment of exception

handlers. As it turns out, each such handler corresponds to a (not necessarily

free) model of the equational theory for exceptions. This idea is then further

expanded to handlers of arbitrary algebraic effects. In order to emphasise the

importance of generalised handlers, we show how they describe previously unre-

lated concepts from both theory and practice.
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The last aim of the thesis is to consolidate the findings into a logic for ef-

fects and their handlers, and use it to derive the known properties of exception

handlers and discuss their generalisation to arbitrary effects.

1.3 Structure of the thesis

In Chapter 2, we give standard definitions of multi-sorted equational theories

[Grä79, Jac99], multi-sorted first-order theories [End00, Jac99], and Lawvere

theories [Bor94, Pow06]. Then, we describe the algebraic representation of ef-

fects, and provide examples of algebraic effects and the corresponding theories.

In Chapter 3, we introduce the a-calculus and use it to point out the basic

properties of algebraic effects. The a-calculus is a minimal equational logic with

a clear separation between values, effects, and computations, along the lines of

Levy’s call-by-push-value approach [Lev06a]. After giving a denotational seman-

tics in terms of models of Lawvere theories, we give the reasoning rules of the

equational logic, and show how each term is equivalent to one in canonical form.

Finally, we use this result to prove some simple properties of programs and show

the completeness of the equational logic.

Afterwards, we start developing the general logic, and in Chapter 4, we de-

scribe its language. We generalise the description of effects by extending the

operations with parameters and binding, and by equipping the equations with

side conditions. The term language of the logic is an extension of the a-calculus

with other call-by-push-value primitives and computation variables, while the

propositions and predicates of the logic are the ones of first-order logic, together

with predicate fixed points and quantifiers over both values and computations.

The interpretation of the logic builds on countable Lawvere theories and their

models in the category of sets.

In Chapter 5, we list all the reasoning rules of the logic: the structural reason-

ing rules, rules for connectives and predicates, equations for call-by-push-value

constructs, a principle of computational induction, and a free model principle,

with the last two expressing the universal property of the free model. In addi-

tion to providing the reasoning rules of the logic, we also show their soundness

with respect to the semantics of the logic in sets.

Chapter 6 further develops the logic and describes how to obtain translations

of other approaches. We generalise the results obtained in the a-calculus, explore
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the properties of the free model principle, and define local and global modali-

ties. Then, we give a translation of Moggi’s computational λ-calculus [Mog89], of

Hennessy-Milner logic [HM85], and of Moggi’s variant [Mog95] of Pitts’s evalu-

ation logic [Pit91]. For the latter, the translation preserves the provability only

for a well-behaved subset of algebraic effects.

With Chapter 7, we shift our focus to the study of handlers. We give an alge-

braic treatment of exception handlers in terms of induced homomorphisms from

the free model, and generalise the approach to arbitrary effects. This introduces

a novel difficulty: such handlers have to obey the same equations as the effects

they handle. We try to resolve this by giving two separate language for describ-

ing and using the handlers, thus delegating the control of correctness to the

meta-level. We conclude the chapter with a list of various examples of handlers

from both theory and practice, for example stream redirection, CCS renaming

and hiding [HM85], timeout, and rollback.

In Chapter 8 we bring the two parts of the thesis together, showing how to

extend the logic with handlers, in particular how to relate handlers to the free

model principle, and how to generalise the existing properties of sequencing and

exception handlers to ones of the handling construct.

Then, in Chapter 9, we extend our development with recursion. We extend

the description of effects with inequalities, introduce computation fixed points

to the term language, and generalise the semantics to one in terms of ω-chain

complete partial orders. Then, we single out admissible predicates, which can be

interpreted in terms of sub-cpos, limit the principle of computational induction

to admissible predicates, and add the principle of Scott induction, also limited to

admissible predicates.

Finally, in Chapter 10, we summarise our results and discuss future work.



Chapter 2

Technical preliminaries

We begin by summarising multi-sorted equational [Grä79, Jac99] and first-order

theories [End00, Jac99], Lawvere theories [Bor94, Pow06], and the algebraic rep-

resentation of effects [PP01, PP03].

In the technical preliminaries, we also introduce a number of abbreviations

that will be used throughout the thesis. We introduce each notation only once,

but use it in numerous variants. For example, although we only say that s abbre-

viates a sequence of sorts s1, . . . , sn, we shall use the same notation to abbreviate

a sequence of terms t1, . . . , tn by t, and other sequences in a similar way.

2.1 Equational theories

All effects treated in the thesis are representable with countable equational theo-

ries. However, to grasp the underlying ideas, the a-calculus is built in the frame-

work of finitary equational theories, which we introduce first. In Section 2.1.2,

we are going to generalise those to countable theories, and in Section 4.1, we

are going to provide a convenient finitary syntax for describing such countable

theories.

Definition 2.1 A signature Σ of a (multi-sorted) equational theory consists of:

• a set of sorts s,

• a set of function symbols f,

• an assignment f :(s1, . . . , sn)→ s of argument sorts s1, . . . , sn and a result sort

s to each function symbol f.

5



6 Chapter 2. Technical preliminaries

When the list of argument sorts is empty, we write f : s instead of f : () → s, and

call f a constant symbol. We often abbreviate s1, . . . , sn by s.

Definition 2.2 Take a countably infinite set of variables x. Then, the set of

terms t is given by the following grammar:

t ::= x | f(t) .

When the list of arguments is empty, we sometimes write f instead of f(). In

addition to f(t), we shall abbreviate f(t1, . . . , tn) by f(ti)i.

For distinct variables x1, . . . , xn and terms t1, . . . , tn and t, we define the term

t[t1/x1, . . . , tn/xn], sometimes abbreviated by t[t/x] or t[ti/xi]i, to be the term ob-

tained by the standard simultaneous substitution of xi by ti in t [End00].

Definition 2.3 A context Γ is a finite list x1 :s1, . . . , xn :sn, sometimes abbreviated

by x :s or (xi :si)i, of distinct variables xi, each paired with a single sort si.

Definition 2.4 A typing judgement Γ` t :s states that a term t has a sort s in a

context Γ. The typing judgements are given inductively by the following rules:

Γ` x :s
(x :s ∈Γ) ,

Γ` t :s

Γ` f(t):s
(f :(s)→ s ∈Σ) ,

where for t= t1, . . . , tn and s= s1, . . . , sn, the typing judgement Γ` t :s states that

Γ` ti :si holds for all 1É i É n.

Note that given Γ and t, there is a unique sort s such that Γ` t :s holds, and

that the typing judgement has a unique derivation. We shall usually talk about

a term Γ` t :s, by which we shall mean a term t such that Γ` t :s holds.

Lemma 2.5 (Substitution) Take a term x :s ` t :s and terms Γ` t :s. Then, we

have

Γ` t[t/x]:s .

Definition 2.6 A (multi-sorted) equational theory T over a signature Σ is a set

of equations Γ ` t =s t′ between terms Γ ` t : s and Γ ` t′ : s, closed under the

following rules:
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• replacement:
Γ`T ti =si t′i (1É i É n)

Γ`T t[t/x]=s t[t′/x]
(x :s` t :s) ,

• substitution:
x :s`T t =s t′

Γ`T t[t/x]=s t′[t/x]
(Γ` t :s) ,

• reflexivity, symmetry, and transitivity of equality:

Γ`T t =s t
(Γ` t :s) ,

Γ`T t =s t′

Γ`T t′ =s t
,

Γ`T t =s t′ Γ`T t′ =s t′′

Γ`T t =s t′′
,

where Γ `T t =s t′ means that the equation Γ ` t =s t′ is in the theory T. If T is

obtained by closing a set A under the above rules, we call A the axiomatisation

of T.

We write

Γ`T t1 =s t2 =s · · · =s tn−1 =s tn

for the sequence of equations

Γ`T t1 =s t2 · · · Γ`T tn−1 =s tn ,

which by transitivity imply the equation Γ`T t1 =s tn.

Definition 2.7 Let T and T′ be equational theories over the same signature Σ.

We say that T′ is an extension of T, if T ⊆ T′. If T Ú T′, we call the extension

proper.

Definition 2.8 An equational theory T is:

• trivial, if it contains only equations of the form Γ` t =s t,

• consistent, if there exists a sort s such that

x :s, x′ :s `T x =s x′

does not hold,

• Hilbert-Post complete, if it is consistent and has no consistent proper exten-

sions.
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Definition 2.9 Let C be a category with finite products. An interpretation I of a

signature Σ in C is given by:

• an object �s�I in C for each sort s ∈Σ,

• and a morphism

�f�I : �s1�I×·· ·×�sn�I →�s�I
for each function symbol f :(s1, . . . , sn)→ s ∈Σ.

We can extend an interpretation to:

• contexts Γ= x1 :s1, . . . , xn :sn with objects

�Γ�I = �s1�I×·· ·×�sn�I ,

• typing judgements Γ` t :s with morphisms

�Γ` t :s�I : �Γ�I →�s�I ,

given recursively on the (unique) derivation of the judgement by

�Γ` xi :si�I = pri ,

�Γ` f(ti)i :s�I = �f�I ◦〈�Γ` ti :si�I〉i ,

where pri denotes the i-th projection morphism and 〈 f i〉i denotes the tuple

of morphisms f1, . . . , fn.

When we are dealing with a single interpretation I, we write �−� instead of �−�I.

Definition 2.10 Let T be an equational theory over a signature Σ, and let C be

a category with finite products. An interpretation M of Σ is a model of T if

Γ`T t =s t′ implies �t�M = �t′�M : �Γ�M →�s�M .

A homomorphism ϑ between such models M and M′ is a family of morphisms

ϑs : �s�M →�s�M′ for each sort s, such that

�s1�M×·· ·×�sn�M
ϑs1 ×·· ·×ϑsn- �s1�M′ ×·· ·×�sn�M′

�s�M

�f�M
?

ϑs
- �s�M′

�f�M′

?

commutes for each f :(s1, . . . , sn)→ s ∈Σ.
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Models of T in C, together with homomorphisms, form a category ModT(C) in

the obvious way [Bor94].

Proposition 2.11 Take a signature Σ, its interpretation M, and a theory T over

Σ with an axiomatisation A. If �t1� = �t2� holds for all equations Γ` t1 =s t2 ∈A,

then M is a model of T.

2.1.1 Single-sorted theories

When a signature Σ contains only a single sort s, we drop any mention of it in

bindings, type assignments, or equations. Then, we refer to function symbols as

operation symbols op, and write their arity as op:n instead of as

op:(s, . . . , s︸ ︷︷ ︸
n

)→ s .

For a given model M, we call �s�M the carrier of M.

Given a set A, we can construct the free model F A of a theory T over a signa-

ture Σ. Let ΣA be the signature Σ extended with a constant a :0 for each a ∈ A,

and let TA be the theory over the extended signature, with no non-trivial equa-

tions other than the ones that follow from T. For the carrier of F A, we take the

set of all equivalence classes [` t] of closed terms ` t over ΣA, factored by the

equality of TA. Then, �op�F A is given by

�op�F A([` t1], . . . [` tn])=def [` op(t1, . . . , tn)] .

Since the provable equality is a congruence, this defines an operation on equiva-

lence classes, and it is straightforward to check that such a family of operations

gives a model of T. A similar construction can be done in any locally finitely

presentable category with finite products [Bor94].

Proposition 2.12 Take a set A = {a1, . . . ,an} and a single-sorted equational the-

ory T. Then,

x1, . . . , xn `T t = t′ if and only if �t[ai/xi]i�F A = �t′[ai/xi]i�F A .

Proof The proof follows from the construction of the free model on A. ä
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2.1.2 Countable theories

Definition 2.13 A signature Σ of a countable (multi-sorted) equational theory

consists of:

• a set of sorts s,

• a set of function symbols f,

• an assignment f :(s)→ s of a countable list of argument sorts s and a result

sort s to each function symbol f.

Note that when discussing countable theories, we use s and similar notations to

denote countable lists.

Terms, contexts, typing rules, and substitution, are routinely adapted to the

countable case. Terms are countably branching, as function symbols have a

countable number of arguments, and well-founded, as they are built inductively.

Since terms can contain a countably infinite number of variables, the contexts

are also infinite. An interpretation of a signature Σ now has to be given in a

category with countable products.

A countable version of an equational theory is, as before, defined to be the set

T of equations, closed under the following infinitary rules:

• replacement:
Γ`T ti =si t′i (1É i)

Γ`T t[t/x]=s t[t′/x]
(x :s` t :s) ,

• substitution:
x :s`T t =s t′

Γ`T t[t/x]=s t[t′/x]
(Γ` t :s) ,

• reflexivity, symmetry, and transitivity of equality:

Γ`T t =s t
(Γ` t :s) ,

Γ`T t =s t′

Γ`T t′ =s t
,

Γ`T t =s t′ Γ`T t′ =s t′′

Γ`T t =s t′′
.

Models of T in a category C with countable products, together with homomor-

phisms, both defined similarly as before, again form a category ModT(C), and if

an interpretation makes all the equations in A sound, it is again a model of the

theory. Similarly, we can construct free models in the category Set of sets or any

locally countably presentable category with countable products.
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2.2 First-order theories

Definition 2.14 A signature Σ of a (multi-sorted) first-order theory consists of:

• a set of sorts s,

• a set of function symbols f,

• an assignment f : (s) → s of argument sorts s and a result sort s to each

function symbol f,

• a set of relation symbols rel,

• an assignment rel:(s) of argument sorts s to each relation symbol rel.

Definition 2.15 Taking a countably infinite set of variables x, terms t are given

in the same way as for an equational theory, while formulae ϕ are given by the

following grammar:

ϕ ::= rel(t) | t1 =s t2 | > | ϕ1 ∧ϕ2 | ⊥ | ϕ1 ∨ϕ2 | ϕ1 ⇒ϕ2 | ∀x :s. ϕ | ∃x :s. ϕ .

We define negation by ¬ϕ=def ϕ⇒⊥.

For distinct variables x, terms t, and a formula ϕ, we define ϕ[t/x] to be the

formula, obtained by the standard capture-avoiding simultaneous substitution

of variables xi by ti in ϕ [End00].

We define contexts Γ= x :s and typing judgements Γ` t :s in the same way as

in multi-sorted equational theories.

Definition 2.16 A formula typing judgement Γ` ϕ :form states that a formula

ϕ is well-typed in a context Γ. The formula typing judgements are given induc-
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tively by the following rules:

Γ` t :s

Γ` rel(t):form
(rel:(s) ∈Σ) ,

Γ` t :s Γ` t′ :s

Γ` t =s t′ :form
,

Γ` >:form
,

Γ` ϕ1 :form Γ` ϕ2 :form

Γ` ϕ1 ∧ϕ2 :form
,

Γ` ⊥:form
,

Γ` ϕ1 :form Γ` ϕ2 :form

Γ` ϕ1 ∨ϕ2 :form
,

Γ` ϕ1 :form Γ` ϕ2 :form

Γ` ϕ1 ⇒ϕ2 :form
,

Γ, x :s ` ϕ:form

Γ` ∀x :s. ϕ:form
,

Γ, x :s ` ϕ:form

Γ` ∃x :s. ϕ:form
.

Lemma 2.17 (Substitution) Take a formula x :s ` ϕ :form and terms Γ` t :s.

Then, we have

Γ` ϕ[t/x]:form .

From the formulae, we build judgements Γ |Ψ ` ϕ, where Ψ is a set of hy-

potheses ϕ1, . . . ,ϕn such that Γ` ϕi :form holds for 1 É i É n, and Γ` ϕ :form is

the conclusion.

Definition 2.18 A multi-sorted first-order theory T over a signature Σ is a set of

judgements, closed under the following rules [Jac99]:

• hypothesis:

Γ |Ψ,ϕ`T ϕ
,

• replacement:

Γ |Ψ`T ti =si t′i (1É i É n) Γ |Ψ`T ϕ[t/x]

Γ |Ψ`T ϕ[t′/x]
(x :s` ϕ:form) ,

• substitution:
x :s |Ψ`T ϕ

Γ |Ψ[t/x]`T ϕ[t/x]
(Γ` t :s) ,
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• reflexivity, symmetry, and transitivity of equality:

Γ |Ψ`T t =s t
(Γ` t :s) ,

Γ |Ψ`T t =s t′

Γ |Ψ`T t′ =s t
,

Γ |Ψ`T t =s t′ Γ |Ψ`T t′ =s t′′

Γ |Ψ`T t =s t′′
,

• truth and falsehood:

Γ |Ψ`T >
,

Γ |Ψ,⊥`T ϕ
,

• introduction and elimination of conjunction:

Γ |Ψ`T ϕ1 Γ |Ψ`T ϕ2

Γ |Ψ`T ϕ1 ∧ϕ2

,
Γ |Ψ`T ϕ1 ∧ϕ2

Γ |Ψ`T ϕ1

,
Γ |Ψ`T ϕ1 ∧ϕ2

Γ |Ψ`T ϕ2

,

• introduction and elimination of disjunction:

Γ |Ψ`T ϕ1

Γ |Ψ`T ϕ1 ∨ϕ2

,
Γ |Ψ`T ϕ2

Γ |Ψ`T ϕ1 ∨ϕ2

,
Γ |Ψ,ϕ1 `T ϕ Γ |Ψ,ϕ2 `T ϕ

Γ |Ψ,ϕ1 ∨ϕ2 `T ϕ
,

• introduction and elimination of implication:

Γ |Ψ,ϕ1 `T ϕ2

Γ |Ψ`T ϕ1 ⇒ϕ2

,
Γ |Ψ`T ϕ1 ⇒ϕ2 Γ |Ψ`T ϕ1

Γ |Ψ`T ϕ2

,

• introduction and elimination of universal quantification:

Γ, x :s |Ψ`T ϕ

Γ |Ψ`T ∀x :s. ϕ
,

Γ |Ψ`T ∀x :s. ϕ

Γ |Ψ`T ϕ[t/x]
(Γ` t :s) ,

• introduction and elimination of existential quantification:

Γ |Ψ`T ϕ[t/x]

Γ |Ψ`T ∃x :s. ϕ
(Γ` t :s) ,

Γ |Ψ`T ∃x :s. ϕ′ Γ, x :s |Ψ,ϕ′ `T ϕ

Γ |Ψ`T ϕ
,

• reductio ad absurdum:
Γ |Ψ,¬ϕ`T ⊥
Γ |Ψ`T ϕ

,
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where Γ |Ψ `T ϕ means that the judgement Γ |Ψ ` ϕ is in the theory T. If T is

obtained by closing a set A under the above rules, we call A the axiomatisation

of T.

Throughout the thesis, we omit any conditions on the freshness of bound vari-

ables, as they are guaranteed by the restrictions on the contexts. For a more

elaborate discussion of such restrictions, see Remark 3.22

Definition 2.19 An interpretation I of a signature Σ is given by:

• a set �s�I for each sort s ∈Σ;

• a map

�f�I : �s1�I×·· ·×�sn�I →�s�I

for each function symbol f :(s1, . . . , sn)→ s ∈Σ;

• and a subset

�rel�I ⊆ �s1�I×·· ·×�sn�I

for each relation symbol rel:(s1, . . . , sn) ∈Σ.

We extend the interpretations to contexts and typed terms just as in multi-

sorted equational theories, while formula typing judgements Γ ` ϕ : form are

interpreted by subsets �Γ` ϕ:form� ⊆ �Γ� according to Tarski’s semantics, given

recursively on the (unique) derivation of the judgement by:

�rel(t1, . . . , tn)� = {γ ∈ �Γ� | 〈�t1�(γ), . . . ,�tn�(γ)〉 ∈ �rel�} ,

�t1 =s t2� = {γ ∈ �Γ� | �t1�(γ)= �t2�(γ)} ,

�>� = �Γ� ,

�ϕ1 ∧ϕ2� = �ϕ1� ∩�ϕ2� ,

�⊥� =; ,

�ϕ1 ∨ϕ2� = �ϕ1� ∪�ϕ2� ,

�ϕ1 ⇒ϕ2� = {γ ∈ �Γ� |γ ∈ �ϕ1� implies γ ∈ �ϕ2�} ,

�∀x :s. ϕ� = {γ ∈ �Γ� | 〈γ,γ〉 ∈ �Γ, x :s ` ϕ:form� for all γ ∈ �s�} ,

�∃x :s. ϕ� = {γ ∈ �Γ� | 〈γ,γ〉 ∈ �Γ, x :s ` ϕ:form� for some γ ∈ �s�} ,

where we abbreviate �Γ` ϕ:form� by �ϕ�.
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Definition 2.20 Let T be a multi-sorted first-order theory over a signature Σ.

An interpretation M of Σ is a model of T if

Γ |ϕ1, . . . ,ϕn `T ϕ implies �ϕ1�M∩·· ·∩�ϕn�M ⊆ �ϕ�M .

Proposition 2.21 Take a signature Σ, its interpretation M, and a theory T over

Σ with an axiomatisation A. If

�ϕ1�M∩·· ·∩�ϕn�M ⊆ �ϕ�M .

holds for all judgements Γ |ϕ1, . . . ,ϕn ` ϕ in A, then M is a model of T.

2.3 Lawvere theories

Definition 2.22 Take small categories C and C′ and a functor F : C→C′. We say

that F is bijective-on-objects, if its object-component is a bijection.

Assuming that both C and C′ have finite products, we say that F is a (strict)

product preserving functor if the image

F A �
Fpr1 F(A×B)

Fpr2- FB

of a (specified) product diagram in C is a (specified) product diagram in C′.

Definition 2.23 A Lawvere theory is a small category L with finite products,

together with a strict product preserving bijective-on-objects functor J : ℵop
0 →L,

where the category ℵ0 is a skeleton [ML71] of the category of all finite sets and

maps between them [Pow06].

The objects of ℵ0 are [0], [1], [2], . . . , where [i] is the representative of a finite

set with i elements. A morphism p : [m] → [n] can be represented by a m-tuple

〈p1, . . . , pm〉, where 1É pi É n for each 1É i É m.

The category ℵ0 has finite sums, in particular, the sum of objects [m] and [n]

is the object [m+ n]. Hence, its dual ℵop
0 has finite products, in particular, the

object [n] is equal to a product [1]×·· ·× [1] of n copies of [1].

Remark 2.24 Usually, a Lawvere theory is defined to be a small category with

finite products and with objects A0, A1, . . . , such that An is equal to (A1)n [Bor94].

Although we prefer to give the definition of a Lawvere theory in a different way,
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which is easier to generalise, the two definitions coincide. (If we want a corre-

spondence with Lawvere theories where An is isomorphic to (A1)n, we have to

omit the strictness condition in Definition 2.23.)

On one hand, take a small category L with finite products and a strict prod-

uct preserving bijective-on-objects functor J : ℵop
0 → L. Since J is bijective-on-

objects, the objects of L are exactly the objects J[0], J[1], J[2], . . . . As J is strict

product preserving, J[n] is equal to (J[1])n. We usually identify J[n] with [n].

On the other hand, taking a small category with finite products and objects

{A i}i∈N, we define J as the functor that maps an object [n] to An and a morphism

p : [m]← [n] to J p : Am → An, defined by

Am = (A1)m 〈prp1 , . . . ,prpn〉- (A1)n = An .

Because [m]× [n]= [m+n], we have

J([m]× [n])= Am+n = (A1)m+n = (A1)m × (A1)n = Am × An = J[m]× J[n] ,

hence J is strict product preserving, and it is obviously bijective-on-objects.

It is easy to check that the two constructions yield an isomorphism of cate-

gories.

Definition 2.25 A model of a Lawvere theory L in the category C with finite

products is a finite-product preserving functor M : L→ C, and a homomorphism

between models M and M′ is a natural transformation h : M → M′. Models of L

in C, together with homomorphisms, form a category ModL(C).

Definition 2.26 For models M1 and M2, the product model M1 ×M2 is defined

by

(M1 ×M2)[n]= M1[n]×M2[n] ,

(M1 ×M2)p = M1 p×M2 p .

If for an object A, the exponent (M[1])A exists, the exponent model MA is defined

by

(MA)[n]= (M[n])A ,

(MA)p = (M p)A .
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It is easy to check that if (M[1])A exists, so does (M[n])A ∼= ((M[1])A)n, and

that both the product and the exponent models are finite-product preserving

functors.

The category ModL(C) is equipped with a forgetful functor U : ModL(C) → C,

which maps a model M to an object UM = M[1] and a homomorphism h : M → M′

to its component h[1] : UM →UM′.

When C is locally finitely presentable (see [Bor94] for the definition), the free

model construction, sketched in Section 2.1.1, gives a functor F : C → ModL(C),

which is the left adjoint of U [Bor94].

Example 2.27 The category Set of all sets and maps between them is a locally

finitely presentable category.

The functors U and F form a strong (see Definition 2.28 below) monad T on

C. We write η and ε for the unit and the co-unit of the adjunction, and µ for the

monad multiplication.

Definition 2.28 A strength of a monad (T,η,µ) is a natural transformation

stA,B : A×TB → T(A×B) ,

that is natural in both components and makes the following diagrams commute:

1×T A
st1,A- T(1× A) (A×B)×TC

stA×B,C- T((A×B)×C)

T A

pr2

?�
Tpr 2

A× (B×TC)
idA ×stB,C

-

∼=
-

A×T(B×C)
stA,B×C

- T(A× (B×C))

∼=
?

A×TB
stA,B- T(A×B) A×TB

stA,B - T(A×B)

A×B

idA ×ηB

6

η A×
B

-

A×T2B
stA,TB

-

id A
×µB

-

T(A×TB)
TstA,B

- T2(A×B)

µA×B

6

Definition 2.29 Take objects A and B, and a model M. Then, for every mor-

phism f : A×B →UM, we define its lifting f † to be the morphism

UεM ◦UF f ◦stA,B : A×UFB →UM .
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Lemma 2.30 For any morphism f : A×B →UM, we have

f † ◦ (idA ×ηB)= f .

Proof We have

f † ◦ (idA ×ηB)

=UεM ◦UF f ◦stA,B ◦ (idA ×ηB) (by definition)

=UεM ◦UF f ◦ηA×B (by definition of strength)

=UεM ◦ηUM ◦ f (by naturality of η)

= f (as UεM and ηUM are inverse [ML71]) .

ä

2.3.1 Algebraic operations

Definition 2.31 Let L be a Lawvere theory and let C be a category with finite

products such that the forgetful functor U : ModL(C) → C has a left adjoint F. A

family of maps aF A : (UF A)n →UF A, where A ranges over all objects of C, is an

algebraic operation of arity n, if for any morphism f : A×B →UFC, the following

diagram commutes.

A× (UFB)n 〈 f † ◦ (idA ×pri)〉n
i=1- (UFC)n

A×UFB

idA ×aFB

?

f †
- UFC

aFC

?

The forgetful functor has a left adjoint if the category C is locally finitely pre-

sentable.

Let M be the smallest set of models that contains all the free models F A,

where A ranges over the objects of C, and is closed under products and exponen-

tials. Given an algebraic operation {aF A}A, we can recursively extend it to other

models from M by

aM1×M2 =def aM1 ×aM2 and aMA =def (aM)A .

Then, such a family behaves as an algebraic operation.
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Proposition 2.32 Let L be a Lawvere theory and let C be a category with finite

products such that the forgetful functor U : ModL(C) → C has a left adjoint F.

Take a family of maps aM : (UM)n →UM, where M ranges over all models in the

family M defined above. Then, for any morphism f : A×B →UM, the following

diagram commutes.

A× (UFB)n 〈 f † ◦ (idA ×pri)〉n
i=1- (UM)n

A×UFB

idA ×aFB

?

f †
- UM

aM

?

Proof We proceed by an induction on the construction of M. The proof is

routine. ä

Lemma 2.33 Assume that the category C is cartesian closed and that the for-

getful functor U : ModL(C)→C has a left adjoint F. Then, the family of maps

{(F A)p : (UF A)n →UF A}A

is an algebraic operation for all morphisms p : [n]→ [1].

Proof Take an arbitrary morphism f : A ×B → UFC. By transposing it, we

obtain a morphism B → (UFC)A. Since (UFC)A =U(FC)A, the adjunction yields

a homomorphism f̂ : FB → (FC)A. Because of the naturality of f̂ , the diagram

(FB)[n]
f̂[n]- (FC)A[n]

(FB)[1]

(FB)p

?

f̂[1]

- (FC)A[1]

(FC)A p

?

commutes, from which it follows that the family {(F A)p}A is indeed an algebraic

operation. ä
In Set and other suitable categories, the Yoneda embedding induces a bijec-

tion between algebraic operations and maps in the Kleisli category of the monad

UF [PP03]. In particular, each algebraic operation {aF A : (UF A)n →UF A}A cor-

responds to a map gena : 1 → UFn, called the generic effect of a, where the set

n= 1+·· ·+1 is the disjoint sum of n terminal objects 1.
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2.3.2 Relationship to equational theories

Each single-sorted equational theory T induces a Lawvere theory LT in a canon-

ical way [Bor94]. First, fix a sequence of variables x1, x2, . . . . Then, for the objects

of LT , we take the objects [0], [1], [2], . . . of the category ℵop
0 .

Because [m] is isomorphic to [1]m, each morphism [n] → [m] is equivalent

to a m-tuple of morphism [n] → [1]. For those, we take equivalence classes

[x1, . . . , xn ` t] of terms, modulo the equality in T.

The composition of morphisms

〈[x1, . . . , xn ` t1], . . . , [x1, . . . , xn ` tm]〉 : [n]→ [m]

and

〈[x1, . . . , xm ` t′1], . . . , [x1, . . . , xm ` t′k]〉 : [m]→ [k]

is defined to be

〈[x1, . . . , xn ` t′1[ti/xi]i], . . . , [x1, . . . , xn ` t′k[ti/xi]i]〉 : [n]→ [k] ,

and the identity morphism on [n] is defined to be

〈[x1, . . . , xn ` x1], . . . , [x1, . . . , xn ` xn]〉 .

The identity laws are easy to check, while the proof (and statement of) associa-

tivity is much more cumbersome.

For an arbitrary single-sorted equational theory T, the categories ModT(C)

and ModLT
(C) are equivalent [Pow06].

2.3.3 Countable theories

Definition 2.34 A countable Lawvere theory is a small category L with count-

able products and a strict countable-product preserving bijective-on-objects func-

tor J : ℵop
1 →L, where ℵ1 is a skeleton [ML71] of the category of all countable sets

and maps between them [Pow06].

Definition 2.35 A model of a countable Lawvere theory L in a category C with

countable products is a countable-product preserving functor M : L → C, and

a homomorphism between such models M and M′ is a natural transformation

h : M → M′.
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Models of L in C, together with homomorphisms, form a category ModL(C).

As before, each countable single-sorted equational theory T induces a canonical

countable Lawvere theory LT such that the categories ModT(C) and ModLT
(C)

are equivalent [Pow06].

If C is locally countably presentable, the forgetful functor U : ModL(C) → C

has a left adjoint F : C → ModL(C), and the two functors form a strong monad

UF : C→C [Pow06].

Example 2.36 An ω-chain complete partial order (A,É) (or an ω-cpo) is a set

A, equipped with a partial order É, such that any countable increasing chain

a1 É a2 É . . . has a supremum
∨

i ai [GHK+03].

For ω-cpos (A,ÉA) and (B,ÉB), we say that a map f : A → B is continuous, if:

• it is monotone, that is a ÉA a′ implies f (a)ÉB f (a);

• it preserves suprema of increasing chains, that is f (
∨

i ai) =∨
i f (ai) (since

f is monotone, the elements f (ai) form a chain).

Then, ω-cpos and continuous maps between them form a category ω-Cpo,

which is locally countably presentable.

2.4 Algebraic effects

As suggested by Plotkin and Power, computational effects may be represented

by single-sorted countable equational theories [PP01, PP02]. For each effect,

we give a set of its sources, which we represent by operation symbols. Then,

each occurrence of those sources represents a branching point in the execution

of the program, where the number of branches reflects the number of possible

outcomes, and is captured in the arity of the operation representing the source.

Finally, the properties of effects are described by an equational theory.

To distinguish this use of equational theories from the standard use in de-

scribing the values of the underlying system, we adopt a different syntax, which

we will also use in the remainder of the thesis when describing effects. The vari-

ables are labelled by z and the contexts by Z. Finally, the terms of the theory are

called effect terms e. The algebraic representation is obtained as follows.
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2.4.1 Exceptions

Take a set E of exceptions. Since the evaluation of a program stops when an

exception is encountered, we take a signature containing a nullary operation

symbol raiseexc : 0 for each exception exc ∈ E. For the theory, we take the trivial

theory. The induced monad T then maps a set A to the set A +E, the disjoint

sum of sets A and E.

A notion that accompanies exceptions is exception handling. In its simplest

form, it is represented by a handling construct handleexc(e1, e2) for each exception

exc, which intuitively evaluates as e1, unless its evaluation raises exc, in which

case it evaluates as e2.

However, exception handling is not an algebraic effect, as the handling con-

struct is not an algebraic operation. If any family of maps {hF A}A were to repre-

sent exception handling, a map hF A : (A+E)2 → A+E should obey the following

two equations:

(hF A)(in1(a), z)= in1(a) ,

(hF A)(in2(exc), z)= z ,

where in1 : A → A+E and in2 : E → A+E are the inclusion maps.

Now take A to be {a,b} and set f (a)= in2(exc) and f (b)= in1(b). Then, we get

(hF A ◦ ( f †)2)(in1(a), in1(b))

= hF A( f †(in1(a)), f †(in1(b)))

= hF A(in2(exc), in1(b)) (by Lemma 2.30)

= in1(b) (as h represents the handling construct) .

However, if the family {hF A}A is an algebraic operation, we have

(hF A ◦ ( f †)2)(in1(a), in1(b))

= ( f † ◦hF A)(in1(a), in1(b)) (since {hF A}A is algebraic)

= f †(hF A(in1(a), in1(b)))

= f †(in1(a)) (as h represents the handling construct)

= in2(exc) .



2.4. Algebraic effects 23

Although exception handling fails to be an algebraic effect, it has an algebraic

treatment in terms of handlers of algebraic effects, a novel concept we discuss in

Chapter 7.

2.4.2 Nondeterminism

To describe nondeterminism, we take a signature containing a binary operation

symbol or :2, which represents nondeterministic choice. We write or(e1, e2) in the

infix form e1 ∪ e2. The theory for nondeterminism is the theory of semi-lattices,

given by the following axiomatisation:

z ` z∪ z = z ,

z1, z2 ` z1 ∪ z2 = z2 ∪ z1 ,

z1, z2, z3 ` (z1 ∪ z2)∪ z3 = z1 ∪ (z2 ∪ z3) .

The induced monad for nondeterminism maps a set A to the set F+(A) of finite

non-empty subsets of A.

To show that the given theory accurately describes nondeterminism, we first

observe that nondeterministic choice satisfies all the semi-lattice equations. To

show that it cannot satisfy any other equation, we prove that the theory is

Hilbert-Post complete: an addition of any other equation, not already present

in the theory, would make the theory inconsistent.

Proposition 2.37 (Plotkin) The theory for nondeterminism is Hilbert-Post com-

plete.

Proof We first observe that due to the semi-lattice equations, each effect term

e can be put in a canonical form z1 ∪ ·· · ∪ zn. Now take an arbitrary extension

T′ of the theory T for nondeterminism, and an arbitrary equation Z ` e = e′ ∈ T′,

where, without loss of generality, both e and e′ are in canonical form.

If both sides of the equation contain exactly the same variables, then the

two sides are equal and the equation is already present in T. If not, there is a

variable z, present only on (say) the left hand side. We take a fresh variable z′,

and substitute all variables except z by z′. If z is the only variable present on the

left hand side, we get

z, z′ `T′ z = z′ ,

if it is not, we get

z, z′ `T′ z∪ z′ = z′ ,
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which by a simultaneous substitution of z′ for z and z for z′ entails

z, z′ `T′ z′∪ z = z ,

and so

z, z′ `T′ z = z′ .

Hence the extension T′ is inconsistent, therefore the theory for nondeterminism

is Hilbert-Post complete. ä

2.4.3 Interactive input and output

To describe interactive input and output on a countable alphabet A, we take

a signature containing an operation symbol input : |A| and an operation symbol

outputa :1 for each character a ∈ A, and the trivial equational theory.

The meaning behind the operation symbols is as follows: input(ea)a repre-

sents a computation that waits for user’s input, and proceeds as ea if the user

entered the character a, while outputa(e) represents a computation that outputs

a and proceeds as e. For example,

input(outputa(outputa(z)))a

represents a computation that waits for the user’s input, repeats it twice and

then proceeds as z. Above, the term input(ea)a abbreviates the countably branch-

ing term

input(eai )i = input(ea1 , ea2 , . . . ) ,

where a1,a2, . . . is some injective enumeration of elements of A. We use a similar

convention for other suitable index sets.

2.4.4 Time

To describe the passing of time, we take a signature containing a unary operation

symbol tick : 1, which represents the passing of a fixed amount of time, and the

trivial theory. The induced monad maps a set A to the set A×N.

An alternative would be to take a signature consisting of a unary opera-

tion symbol tickr : 1 for each non-negative real number r ∈ R+ (or other suitable

monoid), and the theory, generated by equations

z ` tick0(z)= z ,

z ` tickr1(tickr2(z))= tickr1+r2(z) .
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In this case, the induced monad maps a set A to the set A×R+ (or A×M for a

more general monoid M).

2.4.5 State

To describe state with a finite set L of locations and a countable set D of data,

we take a signature containing an operation symbol lookup` :|D| for each location

` ∈ L, and a unary operation symbol update`,d :1 for each location ` ∈ L and datum

d ∈ D.

If we took an infinite set L of locations, the induced monad would not be the

standard one for state. Since the elements of the free model are built inductively

from operations, they represent computations that only update a finite number

of locations at a time. In contrast, the elements of the standard monad represent

computations that can perform an arbitrary modification of the state.

The effect term lookup`(ed)d represents a computation that looks up the con-

tents of location ` and proceeds as ed if the stored contents is d. The effect term

update`,d(e) represents a computation that updates the location ` with d and

proceeds as e. For example, an effect term

lookup`(update`′,d(z))d

represents a computation that copies the contents of ` to `′ and proceeds as z.

State is represented by a theory T, generated by the following seven families

of equations, where for the sake of clarity we omit the contexts:

lookup`(update`,d(z))d = z ,

lookup`(lookup`(zdd′)d′)d = lookup`(zdd)d ,

update`,d(lookup`(zd′)d′)= update`,d(zd) ,

update`,d(update`,d′(z))= update`,d′(z) ,

lookup`(lookup`′(zdd′)d′)d = lookup`′(lookup`(zdd′)d)d′ (` 6= `′) ,

update`,d(lookup`′(zd′)d′)= lookup`′(update`,d(zd′))d′ (` 6= `′) ,

update`,d(update`′,d′(z))= update`′,d′(update`,d(z)) (` 6= `′) .

Then, the induced monad maps a set A to (S× A)S, where S = DL.

The first four equations describe the behaviour of operations on a single lo-

cation: the first one says that updating a location with its current contents does
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not modify the state; the second one says that state does not change between two

consecutive lookups; the third one says that state is determined immediately af-

ter an update; and the fourth one says that the second update overwrites the

first one. The last three equations state that operations on different locations

commute.

Like the theory for nondeterminism, the theory for state both describes prop-

erties of state and is Hilbert-Post complete. As before, the proof proceeds by first

showing that each term has a canonical form, and then analysing equations be-

tween terms in canonical form. For the sake of simplicity, let us assume a single

location `, and write lookup and updated instead of lookup` and update`,d.

Proposition 2.38 For every term Z ` e, there exists a map f : D → D and a

collection of variables (zd)d∈D such that zd ∈ Z for all d ∈ D and

Z `T e = lookup(update f (d)(zd))d .

Proof Let us proceed by an induction on the structure of e:

• if e = z for some variable z, then f (d)= d and zd = z, and we have

Z `T z = lookup(updated(z))d ;

• if e = updated′(e′) for some e′, then by the induction hypothesis, we have

Z `T e′ = lookup(update f (d)(zd))d

and

Z `T updated′(e′)

= updated′(lookup(update f (d)(zd))d)

= updated′(update f (d′)(zd′))

= update f (d′)(zd′)

= lookup(update f (d′)(zd′))d ;

• if e = lookup(ed)d for some family of effect terms (ed)d∈D , then by the induc-

tion hypothesis, we have

Z `T ed = lookup(update fd(d′)(zdd′))d′
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for all d ∈ D and

Z `T lookup(ed)d

= lookup(lookup(update fd(d′)(zdd′))d′)d

= lookup(update fd(d)(zdd))d .

ä

Lemma 2.39 If Z `T updated1(z)= updated2(z′), then Z `T z = z′.

Proof By substituting updated(z) for z and updated(z′) for z′, we get

Z `T updated(z)= updated1(updated(z))= updated2(updated(z′))= updated(z′)

for all d ∈ D. Hence

Z `T z = lookup(updated(z))d = lookup(updated(z′))d = z′ .

ä

Proposition 2.40 (Plotkin) The theory for state is Hilbert-Post complete.

Proof Take an extension T′ of the theory for state, and an arbitrary equation

Z ` e = e′ in T′. Without loss of generality, this equation is of the form

Z ` lookup(update f (d)(zd))d = lookup(update f ′(d)(z
′
d))d .

Then, for all d ∈ D, we have

Z `T′ update f (d)(zd)

= updated(update f (d)(zd))

= updated(lookup(update f (d′)(zd′))d′)

= updated(lookup(update f ′(d′)(z
′
d′))d′)

= updated(update f ′(d)(z
′
d))

= update f ′(d)(z
′
d) ,

and from Lemma 2.39, we get Z `T′ zd = z′d.

If f (d) = f ′(d) and zd = z′d for all d ∈ D, the additional equation is already in

the theory T. Otherwise, the equations fail for some d′. On the one hand, if zd′

and z′d′ are distinct variables, the resulting theory is inconsistent, since we have

Z `T′ zd = z′d for all d ∈ D, including d′.
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On the other hand, we have f (d′) 6= f ′(d′). Take a fresh set of distinct vari-

ables {z′′d}d∈D and substitute lookup(z′′d)d for zd′ and z′d′ . Then, we get

{z′′d}d∈D `T′ update f (d′)(z
′′
f (d′))

= update f (d′)(lookup(z′′d)d)

= update f (d′)(zd)[lookup(z′′d)d/zd, lookup(z′′d)d/z′d]

= update f ′(d′)(z
′
d)[lookup(z′′d)d/zd, lookup(z′′d)d/z′d]

= update f ′(d′)(lookup(z′′d)d)

= update f ′(d′)(z
′′
f ′(d′)) .

Similarly as before, we get Z `T′ z′′f (d′) = z′′f ′(d′), and the extension T′ is inconsis-

tent. Hence, the theory for state is Hilbert-Post complete. ä
In the case of multiple locations, the canonical form is a series of lookups,

which read all the locations, followed by a series of updates, which set the loca-

tions to their final state, followed by a variable. In order to get a fixed ordering of

operations in the normal form, we use the equations for commutativity between

operations on different locations. The rest of the proof generalises accordingly.
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The a-calculus

We start our study with the a-calculus. It is a minimal calculus, which builds

on the algebraic representation of effects, and which describes the most basic

features of effectful computations: caused effects, returned values, and evalua-

tion order. The latter is especially important: as the evaluation of computations

depends on the environment (computer memory, user input, . . . ), different eval-

uation orders cause different results.

For that reason, we base the structure of the a-calculus on Levy’s call-by-

push-value approach, which has a clean syntactic separation between values,

where the evaluation order does not matter, and computations, where it does.

However, we add a third layer for effects, and expand Levy’s slogan: “A value

is, a computation does,” with a third statement: “an effect occurs.” This reflects

a view of values as interchangeable timeless entities, passed around in execu-

tion; of computations as instructions setting the path of the execution, including

triggering of effects; and of effects as the consequences of execution on the envi-

ronment.

Although the a-calculus could easily be generalised to account for countable

equational theories, we limit it to finitary ones for the sake of simplicity of expo-

sition.

3.1 Syntax

Since the a-calculus focuses on computations, we restrict its values to ones de-

scribed in terms of an equational theory.

Definition 3.1 The base theory Tbase is a multi-sorted equational theory over a

29
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base signature Σbase. Its sorts are called base types β, its variables base variables

x, its contexts base contexts Γ, and its terms base terms b.

Example 3.2 To describe natural numbers with addition and multiplication, we

take a base signature, consisting of base type nat and function symbols zero:nat,

succ : (nat) → nat, plus : (nat,nat) → nat, and times : (nat,nat) → nat, which we

write in the usual notation.

Then, we take a base theory, generated by the following axiomatisation:

0+ x = x , 0 · x = 0 ,

succ(x1)+ x2 = succ(x1 + x2) , succ(x1) · x2 = x1 · x2 + x2 .

The effects at hand are also given by a finitary equational theory, in the way

described in Section 2.4.

Definition 3.3 The effect theory Teff is a single-sorted equational theory over

an effect signature Σeff. Its variables are called effect variables z, its function

symbols operation symbols op, its contexts effect contexts Z, and its terms effect

terms e.

By building on this description of values and effects, the a-calculus describes

the computations that return those values and cause those effects.

Definition 3.4 The sets of computation types τ and computation terms t are

given by the following grammar:

τ ::= Fβ ,

t ::= op(t) | returnb | t tox :β. t′ ,

where in t tox :β. t′, the variable x is bound in t′, according to the usual conven-

tions [End00].

The computation type Fβ is the type of computations that return values of

type β, and is named so because it is interpreted by a free model of the effect the-

ory Teff. The grammar of computation terms reflects the three basic properties

of effectful programs: operations op(t) reflect caused effects, returned base terms

returnb reflect returned values, and sequencing t tox :β. t′ reflects evaluation or-

der.



3.1. Syntax 31

We do not give a formal operational semantics of the a-calculus. However,

the intuitive computational meaning behind computation terms is as follows: a

term op(ti)i represents a computation that triggers the effect, represented by an

operation symbol op, and then, depending on its outcome 1 É i É n, proceeds as

ti; a term returnb represents the computation that returns the value b; and a

term t tox :β. t′ represents a computation that evaluates t, binds the result to x

and proceeds as t′. To get an idea about a formal operational treatment, one can

take a look at the operational semantics of call-by-push-value [Lev06a] and of

PCF with algebraic operations [PP01].

Example 3.5 An example of computation term is

or(return2,return3)tox1 :int. (

or(return5,return7)tox2 :int.

return(x1 · x2)) ,

representing a computation that first nondeterministically chooses between 2

and 3, binds the result to x1, then chooses between 5 and 7, binds the result to

x2, and finally returns x1 · x2. Intuitively, the computation nondeterministically

returns one of 10, 14, 15, or 21.

Definition 3.6 For distinct base variables x, base terms b, and a computation

term t, the computation term t[b/x] is the term obtained by the standard simul-

taneous capture-avoiding substitution of xi by bi in t [End00].

Effect terms serve as templates for computation terms. One obtains a compu-

tation term from an effect term by replacing its effect variables by computation

terms.

Definition 3.7 Let e be an effect term with free variables z1, . . . , zn, and let

t1, . . . , tn be computation terms. Then, the instantiation e[ti/zi]i is defined re-

cursively on the structure of e by:

z j[ti/zi]i = t j ,

op(e j) j[ti/zi]i = op(e j[ti/zi]i) j .

Example 3.8 The computation term or(or(return1,return2),return3) is a result of

an instantiation

or(or(z1, z2), z3)[return1/z1,return2/z2,return3/z3] .
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Note that a term can be a result of multiple instantiations. For example, the

above term can also result from the instantiation

or(z1, z2)[or(return1,return2)/z1,return3/z2] .

Definition 3.9 A typing judgement Γ` t :τ states that a term t has a type τ in a

context Γ, which consists of distinct base variables xi, each paired with a single

base type βi. The typing judgements are given inductively by the following rules:

Γ` ti :τ (1É i É n)

Γ` op(t1, . . . , tn):τ
(op:n ∈Σeff) ,

Γ` b :β

Γ` returnb :Fβ
,

Γ` t :Fβ Γ, x :β` t′ :τ

Γ` t tox :β. t′ :τ
.

Note that the computation term raiseexc can have an arbitrary computation

type τ, because the typing hypotheses are vacuously satisfied — this behaviour

can be observed in strongly typed functional programming languages such as

ML or HASKELL, where exceptions can be raised at any point in the program, no

matter what type the surrounding expression expects.

Given a context Γ, a computation term t, and a computation type τ, the

derivation of Γ` t :τ, if it exists, is uniquely determined, and hence so is its inter-

pretation. For this reason, the bound variable x in sequencing t tox :β. t′ has to

be explicitly typed. Usually, its type is determined by the type of t, but since t can

have an arbitrary type, Γ ` t tox. t′ :τ could have more than one typing deriva-

tion, and its semantics would not be uniquely defined. Informally, however, we

often abbreviate t tox :β. t′ by t tox. t′.

Lemma 3.10 (Substitution) Take a computation term x : β ` t : τ and base

terms Γ` b :β. Then, we have

Γ` t[b/x]:τ .

Proof We proceed by an induction on the structure of t. The proof is straight-

forward. ä
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Lemma 3.11 (Instantiation) Let z1, . . . , zn ` e be an effect term and let Γ` ti :τ

be a computation term for all 1É i É n. Then, we have

Γ` e[t/z]:τ .

Proof We proceed by an induction on the structure of e. The proof is straight-

forward. ä

3.2 Semantics

Fix a model M of the base theory Tbase in Set and let L be the Lawvere theory,

induced by the effect theory Teff. Then, each operation symbol op : n ∈ Σeff is

interpreted by a morphism �op�L : [n]→ [1] in L.

Each computation type Fβ is interpreted by the free model F�β�, where F is

the free model functor. Note that while �β� is a set, as given in Definition 2.9,

the interpretation �τ� of a computation type τ is a model, hence a functor, which

maps morphisms in L into operations on U�τ�. In particular, for each computa-

tion type τ and each operation symbol op:n ∈Σeff, we get a map

�τ�(�op�L) : U�τ�n →U�τ� .

A typing judgement Γ` t :τ is interpreted by a map

�Γ` t :τ� : �Γ� →U�τ� ,

defined inductively on its derivation by:

�Γ` op(t1, . . . , tn):τ� = �τ�(�op�L)◦〈�t1�, . . . ,�tn�〉 ,

�Γ` returnb :τ� = η�β� ◦�b� ,

�Γ` t tox :β. t′ :τ� = �t′�† ◦〈idΓ,�t�〉 ,

where, judgements are abbreviated to terms on the right, interpretation �Γ� is

defined component-wise as in multi-sorted theories, and

�t′�† : �Γ� ×UF�β� →U�τ�

is the lifting of

�t′� : �Γ� ×�β� →U�τ� ,

as given in Definition 2.29.
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Lemma 3.12 Take a computation term x :β` t :τ and base terms Γ` b :β. Then,

we have

�t[b/x]� = �t� ◦ 〈�bi�〉i .

Proof We proceed by an induction on the structure of t. The proof is straight-

forward. ä

Lemma 3.13 Let Γ ` ti :τ be a computation term for all 1 É i É n and take an

effect term z1, . . . , zn ` e. Then, we have

�e[ti/zi]i� = �τ�(�e�)◦〈�ti�〉i .

Proof We proceed by an induction on the structure of e. The proof is straight-

forward. ä
Note that the semantics of the a-calculus can easily be given much more gen-

erally in any locally presentable and cartesian closed category C. We need the

local presentability to guarantee the existence of the free model construction,

finite products to interpret contexts, and exponentials to ensure that operation

symbols are interpreted by algebraic operations (see Lemma 2.33).

3.3 Equational logic

Definition 3.14 The equational logic of the a-calculus is the smallest set of

equations Γ ` t =τ t′ between computation terms Γ ` t : τ and Γ ` t′ : τ, closed

under the following rules:

• reflexivity, symmetry, and transitivity of equality:

Γ`a t =τ t
,

Γ`a t =τ t′

Γ`a t′ =τ t
,

Γ`a t =τ t′ Γ`a t′ =τ t′′

Γ`a t =τ t′′
,

• congruence for operations:

Γ`a ti =τ t′i (1É i É n)

Γ`a op(t)=τ op(t′)
(op:n ∈Σeff) ,

• congruence for sequencing:

Γ`a t1 =Fβ t′1 Γ, x :β`a t2 =τ t′2

Γ`a t1 tox. t2 =τ t′1 tox. t′2
,
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• inheritance from the base theory:

Γ`Tbase b =β b′

Γ`a returnb =Fβ returnb′
,

• inheritance from the effect theory:

z1, . . . , zn `Teff e = e′

Γ`a e[ti/zi]i =τ e′[ti/zi]i

(Γ` ti :τ (1É i É n)) ,

• β-equivalence of sequencing:

Γ`a returnb tox. t =τ t[b/x]
,

• algebraicity of operations:

Γ`a op(ti)i tox. t =τ op(ti tox. t)i

(op:n ∈Σeff) ,

where Γ`a t =τ t′ means that the equation Γ` t =τ t′ is in the equational theory

of the a-calculus. In the rules, we have omitted the hypotheses that ensure that

equations are well-formed.

Lemma 3.15 (Substitution) For any equation x :β `a t =τ t′ and base terms

Γ` b :β, we have

Γ`a t[b/x]=τ t′[b/t] .

Proof We proceed by an induction on the derivation of x :β`a t =τ t′. The proof

is routine. ä
Since the a-calculus has no variables for computation terms, we cannot use

the replacement rule as in the multi-sorted equational logic. Instead, we have to

write out the congruence rules for each constructor.

In addition to those rules, we have two rules, used to inherit equations from

the base and effect theories, and two equational schemas, which describe the

behaviour of sequencing. The first one is the usual β-equivalence, while under-

standing the second one requires some computational intuition.

Intuitively, the evaluation of op(ti)i tox. t starts by evaluating op(ti)i. This

begins with an occurrence of the effect represented by the operation op:n. Then,
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depending on the outcome of this effect, say i, the term ti is evaluated. The

resulting value is bound to x, and then, t is evaluated.

On the other hand, the evaluation of op(ti tox. t)i begins with an occurrence

of the effect represented by the operation op:n. Then, depending on the outcome

of this effect, say i, the term ti tox. t is evaluated. This proceeds by evaluating ti,

binding the resulting value to x, and evaluating in t. Since the two evaluations

proceed in the same way, we deem them equivalent, which is exactly what the

second schema states.

Proposition 3.16 (Soundness) If Γ`a t =τ t′, then �t� = �t′�.
Proof We do an induction on the derivation of the equation. For the congru-

ence rules and the inheritance from the base theory, the proof is straightforward.

For substitution rule, we employ Lemma 3.12, while for inheritance from the

effect theory, we employ Lemma 3.13.

For the β-equivalence of sequencing, we have

�returnb tox. t�
= �t�† ◦〈idΓ,η�β� ◦�b�〉 (by definition)

= �t� ◦ 〈idΓ,�b�〉 (by Lemma 2.30)

= �t[b/x]� (by Lemma 3.12) .

And for the algebraicity of operations, we have

�op(ti)i tox. t�
= �t�† ◦ (idΓ×�Fβ�(�op�))◦〈idΓ,〈�ti�〉i〉 (by definition)

= �τ�(�op�)◦〈�t�† ◦〈idΓ,�ti�〉〉i (by Lemma 2.33)

= �op(ti tox. t)i� (by definition) .

ä
The majority of results in the a-calculus follow from the properties of the free

model, and are obtained by observing that computation terms can be put in a

canonical form, composed only of operations and returned values. This is possi-

ble only due to the simplicity of the a-calculus. In a more powerful calculus such

as the term calculus of the logic, discussed in Chapter 4, such a canonical form

does not exist. For that reason, the logic, discussed in Chapter 5, includes a prin-

ciple of computational induction, which generalises the approach with canonical

forms.
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Definition 3.17 A computation term Γ ` t :τ is in canonical form, if it is of the

form:

• Γ` returnb :Fβ for some base term Γ` b :β;

• Γ ` op(ti)i :τ, where computation terms Γ ` ti :τ are in canonical form for

all 1É i É n.

To simplify the proof that all computation terms are equivalent to a term in

canonical form, we first consider a special case of a sequencing with both terms

already in canonical form.

Lemma 3.18 If Γ` t1 :Fβ and Γ, x :β` t2 :τ are in canonical form, there exists a

term Γ` t :τ in canonical form, such that

Γ`a t1 tox. t2 =τ t .

Proof We proceed by an induction on the canonical form of t1:

• if t1 = returnb for some base term b, then

Γ`a returnb tox. t2 =τ t2[b/x] ,

and it is easy to show that if t2 is in canonical form, so is t2[b/x];

• if t1 = op(t′i)i for some operation symbol op :n ∈Σeff and computation terms

t′i in canonical form, then

Γ`a op(t′i)i tox. t2 =τ op(t′i tox. t2)i .

By the induction hypothesis, there exist computation terms t′′i in canonical

form such that Γ`a t′i tox. t2 =τ t′′i for 1É i É n, hence

Γ`a op(t′i)i tox. t2 =τ op(t′′i )i .

ä
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Proposition 3.19 For each computation term Γ ` t :τ, there exists a computa-

tion term Γ` t′ :τ in canonical form, such that Γ`a t =τ t′.

Proof We do an induction on the derivation of Γ` t :τ:

• if t = returnb for some base term Γ ` b :β, then t is already in canonical

form;

• if t = op(ti)i for some operation symbol op : n ∈ Σeff and computation terms

ti, then by induction hypothesis, there exist computation terms t′i in canon-

ical form such that Γ`a ti =τ t′i for all 1É i É n, hence

Γ`a t =τ op(t′i)i ,

and op(t′i)i is in canonical form.

• if t = t1 tox. t2 for some computation terms Γ ` t1 : β and Γ, x : β ` t2 : τ,

then by induction hypothesis, there exist computation terms t′1 and t′2 in

canonical form, such that Γ `a t1 =Fβ t′1 and Γ, x :β `a t2 =τ t′2. Then, by

Lemma 3.18, there exists a term t′ in canonical form such that

Γ`a t′1 tox. t′2 =τ t′ ,

hence

Γ`a t =τ t1 tox. t2 =τ t′1 tox. t′2 =τ t′ .

ä

Note that the canonical forms are not unique unless both the base and the

effect theories are trivial. Still, the existence of canonical forms leads to proofs,

simpler than the ones by structural induction. Examples are proofs of η-equiva-

lence and associativity of sequencing — two schemas that are usually taken as

axioms [Mog91, Lev06a].

Proposition 3.20 (η-equivalence of sequencing) For any computation terms

Γ` t :Fβ, we have

Γ`a t tox. returnx =Fβ t .

Proof According to Proposition 3.19, we can assume without loss of generality

that t is in canonical form. Let us proceed by induction on the structure of that

canonical form:
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• if t = returnb for some base term Γ` b :β, then

Γ`a returnb tox. returnx

=Fβ (returnx)[b/x] (by β-equivalence)

=Fβ returnb (by definition of substitution) ;

• if t = op(ti)i for some operation symbol op : n ∈ Σeff and computation terms

Γ` ti :Fβ in canonical form for 1É i É n, then

Γ`a op(ti)i tox. returnx

=Fβ op(ti tox. returnx)i (by algebraicity of operations)

=Fβ op(ti)i (by the induction hypothesis) .

ä

Proposition 3.21 (Associativity of sequencing) The equation schema

Γ`a t1 tox1. (t2 tox2. t)=τ (t1 tox1. t2)tox2. t

is derivable for all Γ` t1 :Fβ1, Γ, x1 :β1 ` t2 :Fβ2, and Γ, x2 :β2 ` t :τ.

Remark 3.22 The usual condition that x1 does not appear free in t is imple-

mented by the restrictions on contexts. Since each context contains at most one

occurrence of each variable, x1 does not appear in Γ, otherwise t2 would not be

well-typed. Similarly x2 does not appear in t2, otherwise t2 tox2. t would not be

well-typed, hence x1 and x2 are distinct, and x1 does appear free in t. We use

the same reasoning throughout the thesis and omit explicit restrictions on free

variables.

Proof According to Proposition 3.19, we can assume without loss of generality

that t1 is in canonical form. Let us proceed by induction on the structure of that

canonical form:

• if t1 = returnb1 for some base term Γ` b1 :β1, we have

Γ`a returnb tox1. (t2 tox2. t)

=τ (t2 tox2. t)[b/x1] (by β-equivalence)

=τ t2[b/x1]tox2. t (since x1 does not appear in t)

=τ (returnb tox1. t2)tox2. t (by β-equivalence) ;
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• if t1 = op(t′i)i for some operation symbol op :n ∈Σeff and computation terms

Γ` t′i :Fβ1 in canonical form for 1É i É n, we have

Γ`a op(t′i)i tox1. (t2 tox2. t)

=τ op(t′i tox1. (t2 tox2. t))i (by algebraicity of operations)

=τ op((t′i tox1. t2)tox2. t)i (by induction hypothesis)

=τ (op(t′i tox1. t2)i)tox2. t (by algebraicity of operations)

=τ (op(t′i)i tox1. t2)tox2. t (by algebraicity of operations) .

ä

As seen in the last proof, associativity of sequencing is a consequence of the

algebraicity of operations. There are other properties of operations, which are

reflected in sequencing, for example commutativity is derivable when the effect

theory is commutative.

Proposition 3.23 If the effect theory Teff is commutative, that is

Z `Teff op(op′(zi j) j)i = op′(op(zi j)i) j

holds for all operations op:n,op:n′ ∈Σeff, then

Γ`a t1 tox1. (t2 tox2. t)=τ t2 tox2. (t1 tox1. t)

holds for all Γ` t1 :Fβ1, Γ` t2 :Fβ2, and Γ, x1 :β1, x2 :β2 ` t :Fτ.

Proof The idea of the proof is that we use algebraicity of operations to move

operation symbols to the outside of the computation term, where we can reorder

them due to commutativity of the effect theory. Then, using the induction hy-

pothesis, we can reorder the arguments, and finally we move the operation sym-

bols back to the inside.

According to Proposition 3.19, we can assume that t1 is in canonical form and

proceed by induction on its structure:

• if t1 = returnb1 for some base term Γ` b1 :β1, we have:

Γ`a returnb tox1. (t2 tox2. t)

=τ (t2 tox2. t)[b/x1] (by β-equivalence)

=τ t2 tox2. t[b/x1] (since x1 does not appear in t2)

=τ t2 tox2. (returnb1 tox1. t) (by β-equivalence) ;
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• otherwise, we have t1 = op(t1i)i for some operation symbol op : n ∈ Σeff and

computation terms Γ` t1i :Fβ1 such that

Γ`a t1i tox1. (t2 tox2. t)=τ t2 tox2. (t1i tox1. t)

holds for all t2. Next, assume that t2 is in canonical form and proceed by

induction on its structure to show that

Γ`a op(t1i)i tox1. (t2 tox2. t)=τ t2 tox2. (op(t1i)i tox1. t)

holds:

– if t2 = returnb2 for some base term Γ` b2 :β2, the argument is similar

as in the base case for t1;

– otherwise, we have t2 = op(t2 j) j for some operation symbol op′ :n′ ∈Σeff

and computation terms Γ` t2i :Fβ2 such that

Γ`a op(t1i)i tox1. (t2 j tox2. t)=τ t2 j tox2. (op(t1i)i tox1. t)

holds. Then, we have

Γ`a op(t1i)i tox1. (op′(t2 j) j tox2. t)

=τ op(t1i tox1. (op′(t2 j) j tox2. t))i (by algebraicity of operations)

=τ op(op′(t2 j) j tox2. (t1i tox1. t))i (by hypothesis of induction on t1)

=τ op(op′(t2 j tox2. (t1i tox1. t)) j)i (by algebraicity of operations)

=τ op′(op(t2 j tox2. (t1i tox1. t))i) j (by commutativity of Teff)

=τ op′(op(t1i tox1. (t2 j tox2. t))i) j (by hypothesis of induction on t1)

=τ op′(op(t1i)i tox1. (t2 j tox2. t)) j (by algebraicity of operations)

=τ op′(t2 j tox2. (op(t1i)i tox1. t)) j (by hypothesis of induction on t2)

=τ op′(t2 j) j tox2. (op(t1i)i tox1. t) (by algebraicity of operations) .

Note that we could also proceed by induction on the sum of sizes of t1 and t2,

and that the resulting proof would be shorter. However, an advantage of a proof

with structural induction is that it easily adapts to a proof with the principle of

induction in the logic. ä
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Example 3.24 The effect theory for nondeterminism is commutative, as we have

`T or(or(z11, z12),or(z21, z22))= or(or(z11, z21),or(z12, z22)) .

Hence, in absence of other effects, the order of evaluation of nondeterministic

computations does not matter. Note that commutativity of the effect theory is a

consequence of both commutativity and associativity of or.

Theorem 3.25 (Completeness) If for computation terms Γ ` t :τ and Γ ` t′ :τ,

we have �t�M = �t′�M for all models M of the base theory Tbase, then Γ`a t =τ t′.

Proof First, assume that the effect theory Teff is consistent. If not, we imme-

diately get Γ`a t =τ t′ using the rule for inheritance from the effect theory.

Now, take a model M of the base theory, defined by setting �β�M to be the set

of equivalence classes [Γ ` b :β] of base terms b of base type β in the context Γ,

modulo the provable equality of Tbase.

Due to Proposition 3.19, we can assume without loss of generality that both

t and t′ are in canonical form. Furthermore, say that τ= Fβ for some base type

β. Now, we can construct effect terms (zi)i ` e and (zi)i ` e′, and base terms

Γ` bi :β such that

Γ`a t =Fβ e[returnbi/zi]i ,

Γ`a t′ =Fβ e′[returnbi/zi]i .

Note that we instantiate two different effect terms with the same set of compu-

tation terms returnbi. Furthermore, we may assume that �bi�M 6= �b j�M for i 6= j,

as otherwise, the definition of the model M implies Γ`Tbase bi =β b j, and we may

replace bi by b j.

Next, let A = {�bi�M}i ⊂ �β�M. By Lemma 3.13, we have

�t�M
= �e[returnbi/zi]i�M
= �Fβ�M(�e�L)◦〈�returnbi�M〉i

= j ◦�e[�bi�M/zi]i�F A ,

where j is the canonical embedding of the carrier U�F A� into the carrier U�Fβ�.
A similar equality holds for t′, hence we get

j ◦�e[�bi�M/zi]i�F A = �t�M = �t′�M = j ◦�e′[�bi�M/zi]i�F A .
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Since the effect theory is consistent, j is injective. Thus, Proposition 2.12 implies

(zi)i `Teff e = e′ .

Using the rule for inheritance from the effect theory, we get Γ`a t =τ t′. ä





Chapter 4

Language of the logic

The main purpose of the a-calculus is to emphasise the distinct features of al-

gebraic effects: the layered structure, the interpretation of computations with

models of Lawvere theories, and the algebraicity of operations. Now, taking these

observations into account, we extend the a-calculus to a more powerful logic for

algebraic effects.

We start by giving the language of the logic, which we build in three stages:

first, we represent the values and effects of the underlying system; then, we

introduce the terms of the logic; and, finally, we give the propositions and the

predicates of the logic.

We give the semantics of the logic in the category Set. It is locally countably

presentable, hence we can interpret free models of countable Lawvere theories.

It is cartesian closed and cocomplete, so we can interpret the rest of the type

system. And it gives a simple semantics to propositions and predicates, even

with their fixed points.

The question of a logic over a general category is beyond the scope of this

thesis. Still, if we want to model recursion, the semantics easily adapts to one in

the category ω-Cpo, as shown in Chapter 9. Furthermore, a substantial amount

of development has been done on combining call-by-push-value with polymor-

phism [MS09], or representing local state with Lawvere theories [PP02], and

both could be used to introduce these features to the logic.

45
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4.1 The effect theory

We generalise the approach taken in the a-calculus and describe the built-in

values with a first-order rather than an equational theory.

Definition 4.1 The base theory Tbase is a multi-sorted first-order theory over a

base signature Σbase. Its sorts are called base types β, its variables base variables

x, its contexts base contexts Γ, its terms base terms b, and its formulae base

formulae ϕ. Out of the base types, we select a subset of arity types α, which are

the types of outcomes of effects.

As in the a-calculus, the interpretation of the base theory completely deter-

mines the interpretation of the rest of the logic. However, in order to get an

interpretation of operations in countable Lawvere theories, we have to restrict

their outcomes to countable sets.

Definition 4.2 A model M of the base theory Tbase is a model of the logic, if it

maps arity sorts to countable sets.

In the development of the logic, we assume a fixed model M.

The effects at hand are also given by a modification of a single-sorted equa-

tional theory, which provides a finitary notation for describing effects that are

given by an infinite family of operations, have an infinite number of outcomes, or

are described by an infinite number of equations [PP03].

Definition 4.3 An effect signature Σeff consists of a finite list of operation sym-

bols op, together with a (possibly empty) list of parameter base types β, and a

(possibly empty) list of lists of argument arity types α1, . . . ,αn, written as

op:β;α1, . . . ,αn .

We omit the semicolon when β is empty, and we write n instead of α1, . . . ,αn

when all the αi are empty.

The intuition behind the generalised operations is as follows. Instead of hav-

ing a set of nearly identical operations, for example update`,d :1 for each location

` and datum d, we take a single operation update : loc,dat;1 with parameter

types loc of locations and dat of data. Next, if we were to describe a memory

holding an infinite set of data by routinely generalising the operations to count-

able ones, we would be left with an infinitary syntax [PP01]. Instead, we allow
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arguments of operations to be dependent on values of arity types. For exam-

ple: lookup : loc;dat has, in addition to a location parameter, an argument that

depends on the datum, stored in the location.

Remark 4.4 The choice of the operation symbol signature seems arbitrary —

why have a single list of parameter types, but multiple lists of argument types?

In seeking generality, one might consider arbitrary first-order combination of

base types. Due to the distributivity of products over sums, each such combi-

nation is equivalent to a sum of products of base types. Hence, the argument

types of operations are already in the most general form, just expressed in a no-

tation without products and sums. Now, suppose we have an operation op with a

parameter type ∏
i1

βi1 +·· ·+∏
im

βim .

To give such a parameter is the same as to give an index j and a parameter from∏
i j βi j . Thus, op can be represented by m operation symbols op j with parameter

types
∏

i j βi j , which is again the generality achieved in our syntax.

Definition 4.5 Take a countably infinite set of effect variables z. Then, the set

of effect terms e is given by the following grammar:

e ::= z(b) | opb(x1. e1, . . . , xn. en)

When the list xi is empty, we write e i instead of xi. e i.

To reflect the dependency on values, we type effect terms in a base context Γ

and an effect context Z, consisting of effect variables z : (α), each associated to a

list of arity types.

Definition 4.6 An effect typing judgement Γ; Z ` e states that an effect term e

is well-typed in Γ and Z. Effect typing judgements are given inductively by the

following inductive rules:

Γ` b :α

Γ; Z ` z(b)
(z :(α) ∈ Z) ,

Γ` b :β Γ, xi :αi; Z ` e i (1É i É n)

Γ; Z ` opb(x1. e1, . . . , xn. en)
(op:β;α1, . . . ,αn) .
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To describe the case when an equation holds only for a particular subset of

parameters, we equip equations between effect terms with side-conditions, which

are base formulae, as defined in Section 2.2.

Definition 4.7 An effect theory Teff is a finite collection of conditional equations

Γ; Z ` e = e′ (ϕ) ,

between effect terms Γ; Z ` e and Γ; Z ` e′ with a side condition Γ` ϕ :form. We

write Γ; Z `Teff e = e′ (ϕ) if the equation Γ; Z ` e = e′ (ϕ) is in Teff.

Altogether, this allows us to limit ourselves to a finite list of operations and

a finite list of equations describing them, which then allows finitary rules in the

logic.

Remark 4.8 Note that the effect theory is just a collection of conditional equa-

tions rather than a reasoning system. Although there is a way of stating the

effect theory in terms of a conditional equational theory [Plo06], we choose a

simpler path and move all the reasoning into the logic.

Now, we take another look at the examples of effect theories for various effects

in the a-calculus, and adapt them to the presentation in the logic.

Example 4.9 (Exceptions) To describe a set of exceptions E, the base signa-

ture Σbase consists of a base type exc and a constant symbol exc : exc for each

exc ∈ E, while the base theory Tbase is trivial.

The effect signature Σeff contains a nullary operation symbol raise : exc;0,

while the effect theory Teff is empty. Then, an effect term raiseexc represents the

computation that raises exception exc.

Example 4.10 (Nondeterminism) The description of nondeterminism is the

same as before, except that for the effect theory, we take the three equations

which state that or : 2 is associative, commutative, and idempotent. To justify

that this collection of equations is an accurate description of nondeterminism,

we observe that it describes properties of the nondeterministic choice and that it

abbreviates an equational theory, which is Hilbert-Post complete.

Example 4.11 (Interactive input and output) To describe interactive input

and output on a (now not necessarily finite) alphabet A, we take a base signature
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Σbase, consisting of a base type char and appropriate constant symbols a :char

for each a ∈ A, and the trivial base theory Tbase.

We take an effect signature Σeff, containing an operation symbol input :char

and an operation symbol output:char;1, together with the empty effect theory.

Then a computation that waits for the user’s input, repeats it twice and then

proceeds as z is represented by the effect term

input(a. outputa(outputa(z))) .

Example 4.12 (Time) We can represent time with a unary operation symbol

tick :1 as before. Alternatively, we can first represent integers (or other suitable

monoid) with the base signature and theory as in the a-calculus. Then, we take

an effect signature Σeff, containing a unary operation symbol tick : int;1 and an

effect theory Teff, containing the following two equations:

z ` tick0(z)= z ,

x1 :int, x2 :int; z ` tickx1(tickx2(z))= tickx1+x2(z) .

Whereas in the a-calculus, the arithmetic in the representation of time had to be

done on the meta-level, the current presentation allows arbitrary base terms as

parameters.

Example 4.13 (State) For state, the base signature Σbase contains a base type

loc of memory locations, an arity type dat of data, and appropriate function and

relation symbols to represent the locations and data, while the effect signature

Σeff consists of operation symbols lookup:loc;dat and update:loc,dat;1.

Then, a computation that copies the content of ` to `′ and proceeds as z, can

be represented by an effect term

lookup`(d. update`′,d(z)) .

The effect theory comprises the following conditional equations, again omit-
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ting the context [Plo06]:

lookup`(d. lookup`(d
′. z(d,d′))= lookup`(d. z(d,d)) ,

lookup`(d. update`,d(z))= z ,

update`,d(lookup`(d
′. z(d′))= update`,d(z(d)) ,

update`,d(update`,d′(z))= update`,d′(z) ,

lookup`(d. lookup`′(d
′. z(d,d′)))= lookup`′(d

′. lookup`(d. z(d,d′))) (` 6= `′) ,

update`,d(lookup`′(d
′. z(d′)))= lookup`′(d

′. update`,d(z(d′))) (` 6= `′) ,

update`,d(update`′,d′(z))= update`′,d′(update`,d(z)) (` 6= `′) .

Although the effect theory Teff is not an equational theory, it is an abbrevia-

tion for a countable one as follows.

For each operation symbol op :β;α1, . . . ,αn ∈Σeff and each tuple a ∈ �β�, take

an operation symbol opa of countable arity
∑

i |�αi�|. Then each Γ; Z ` e and each

γ ∈ �Γ� gives rise to a term Z′ ` eγ, where Z′ consists of variables za for each

z :(α) ∈ Z and a ∈ �α�, and eγ is recursively defined by

(z(b))γ = z�b�(γ) ,

(opb(xi. e i)i)γ = op�b�(γ)((e
γ

i [ai/xi])ai∈�αi�)i .

Example 4.14 To clarify the construction, take the effect theory for state, as

described in Example 4.13. If we have an effect term

`:loc; z :(dat)` lookup`(d. update`,d(z(d)) ,

an element l ∈ �loc�, and if �dat� = {d1,d2, . . . }, then Z′ = zd1 , zd2 , . . . and

(lookup`(d. update`,d(z(d)))l = lookupl(updatel,d1(zd1),updatel,d2(zd2), . . . ) .

In the case of operation symbols with multiple lists of argument types, we pro-

ceed similarly.

The equational theory is generated by equations Z′ ` eγ = e′γ for any equation

Γ; Z ` e = e′ (ϕ) in Teff and any γ ∈ �ϕ� ⊂ �Γ�.
Note that for the sake of simplicity, we will see each model M of the induced

Lawvere theory L as a set UM, together with a map

opM : �β� ×UM�α1� ×·· ·×UM�αn� →UM
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for each op:β;α1, . . . ,αn ∈Σeff, defined by

opM(a, f1, . . . , fn)=def M(opa)( f1(a1)a1∈�α1� , . . . , fn(an)an∈�αn�) .

Then, the following naturality result, analogous to Lemma 2.33, holds.

Proposition 4.15 For any op :β;α1, . . . ,αn ∈Σeff and any map f : A×B →UFC,

the diagram

A×�β� ×
n∏

i=1
(UFB)�αi� f̃- �β� ×

n∏
i=1

(UFC)�αi�

A×UFB

idA ×opFB

?

f †
- UFC

opFC

?

commutes, where

f̃ (a,a, f1, . . . , fn)= 〈a,a1 7→ f †(a, f1(a1)), . . . ,an 7→ f †(a, fn(an))〉 .

Proof Take arbitrary a ∈ �β� and f i ∈ (UFB)�αi� for 1É i É n. By a straightfor-

ward countable generalisation of Lemma 2.33, we show that the family

{F A�opa� : (UF A)
∑n

i=1 |�αi�|
A →UF A}A

is an algebraic operation. Hence, the following diagram commutes

A× (UFB)
∑n

i=1 |�αi�|
〈 f † ◦ (idA ×pr j)〉

∑n
i=1 |�αi�|

j=1 - (UFC)
∑n

i=1 |�αi�|

A×UFB

idA ×FB�opa�
?

f †
- UFC

FC�opa�
?

and the proposition holds. ä
This result can be extended to other models M, obtained by products and

exponentials of the free models.

4.2 Term language

The term language of the logic for algebraic effects is based on Levy’s call-by-

push-value approach [Lev06a]. A minor difference is that in call-by-push-value
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one has no base types, but compensates for them with indexed products and

sums, which our language does not have. A more significant difference is that for

the purpose of the logic we allow variables over both values and computations.

Definition 4.16 The sets of value types σ and computation types τ are given by

the following grammar:

σ ::=β | 1 | σ1 ×σ2 | 0 | σ1 +σ2 | Uτ ,

τ ::= Fσ | 1 | τ1 ×τ2 | σ→ τ .

The meaning behind value types is the usual one, except for Uτ, which rep-

resents the type of thunked (or frozen) computations of type τ. One can imagine

storing the code of a computation for the purpose of executing it later. The com-

putation type Fσ has the same meaning as in the a-calculus: it is the type of

computations that return values of type σ. As for finite products, 1 is the unit

type, and τ1 ×τ2 is the type of pairs of computations. Those do not evaluate se-

quentially, as one might expect, but only after selecting one of the components

with a projection. The function type σ→ τ is the type of computations of type τ

that expect a value of type σ before evaluating. We abbreviate σ1 →···→σn → τ

by σ→ τ.

Definition 4.17 Take disjoint countably infinite sets of value variables x and

computation variables y. The sets of value terms v and computation terms t are

given by the following grammar:

v ::= x | f(v) | ? | 〈v1,v2〉 | fstv | sndv | inlv | inrv | thunk t ,

t ::= y | forcev | opv(x1. t1, . . . , xn. tn) | if rel(v)then t1 else t2 |
returnv | t tox :σ. t′ | zerov | matchvwithinlx1 :σ1. t1, inr x2 :σ2. t2 |
? | 〈t1, t2〉 | fst t | snd t | λx :σ. t | tv ,

variables xi in operation application are bound in ti, where variable x in se-

quencing is bound in t′, variables x1 and x2 in pattern matching are bound in

t1 and t2, respectively, and variable x in lambda abstraction is bound in t, all

according to the standard conventions of α-equivalence and renaming of bound

variables in order to avoid clash of variables.

The meaning behind most of the value and computation terms is again stan-

dard. The value term thunk t represents the thunk of the computation term t,
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while the computation term forcev represents the inverse procedure. Although

we form sums of value terms, we match them in computation terms. In partic-

ular, zerov is a computation term that represents the unique map from the zero

type, while matchvwithinlx1 :σ1. t1, inr x2 :σ2. t2 is the binary pattern matching

construct. Often, we write conditionals of the form if v1 = v2 then t1 else t2. This

is an abbreviation for if eq(v1,v2)then t1 else t2, where we have assumed that the

base signature contains a relation symbol eq : (β,β) for an appropriate base type

β and that the base theory contains the axiom

x1 :β, x2 :β` eq(x1, x2)⇔ (x1 =β x2) .

As in the a-calculus, bound variables in sequencing and pattern matching

construct have to be explicitly typed in order to ensure a unique derivation of

typing judgements. However, we often omit those types and write t tox. t′ and

matchvwithinlx1. t1, inr x2. t2 instead. Bound variables in operations do not have

an explicit type assignment because their type is determined by the arity of op-

eration symbols.

Instead of λx1 :σ1. . . .λxn :σn. t, we write λx :σ. t, and instead of (. . . (tv1) . . . )vn

we write tv. By using nested binary sums and zero type, we can define arbitrary

finitary sums of n values, with injections inji for 1É i É n, and a pattern matching

construct

matchxwith(inji xi. ti)i

as an abbreviation for nested binary pattern matching constructs and zero maps.

A value context Γ is a list

x1 :σ1, . . . , xn :σn

of distinct value variables, each paired to a single value type, and a computation

context ∆ is a list

y1 :τ, . . . , ym :τm

of distinct computation variables, each paired to a single computation type.

Definition 4.18 A value typing judgement Γ;∆ ` v :σ states that a value term

v has a value type σ in a value context Γ and a computation context ∆, while a

computation typing judgement Γ;∆ ` t :τ states the analogue for a computation

term t and a computation type τ. The typing judgements are given inductively

by the following rules:
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Γ;∆` x :σ
(x :σ ∈Γ) ,

Γ;∆` v :β

Γ;∆` f(v):β
(f :(β)→β ∈Σbase) ,

Γ;∆` ?:1
,

Γ;∆` v1 :σ1 Γ;∆` v2 :σ2

Γ;∆` 〈v1,v2〉:σ1 ×σ2

,
Γ;∆` v :σ1 ×σ2

Γ;∆` fstv :σ1

,
Γ;∆` v :σ1 ×σ2

Γ;∆` sndv :σ2

,

Γ;∆` v :σ1

Γ;∆` inlv :σ1 +σ2

,
Γ;∆` v :σ2

Γ;∆` inrv :σ1 +σ2

,
Γ;∆` t :τ

Γ;∆` thunk t :Uτ
,

Γ;∆` y:τ
(y:τ ∈∆) ,

Γ;∆` v :Uτ

Γ;∆` forcev :τ
,

Γ;∆` v :β Γ, xi :αi; ∆` ti :τ (1É i É n)

Γ;∆` opv(xi. ti)i :τ
(op:β;α1, . . . ,αn ∈Σeff) ,

Γ` ϕ:form Γ;∆` t1 :τ Γ;∆` t2 :τ

Γ;∆` if rel(v)then t1 else t2 :τ
,

Γ;∆` v :σ

Γ;∆` returnv :Fσ
,

Γ;∆` t :Fσ Γ, x :σ; ∆` t′ :τ

Γ;∆` t tox :σ. t′ :τ
,

Γ;∆` v :0

Γ;∆` zerov :τ
,

Γ;∆` v :σ1 +σ2 Γ, x1 :σ1; ∆` t1 :τ Γ, x2 :σ2; ∆` t2 :τ

Γ;∆` matchvwithinlx1 :σ1. t1, inr x2 :σ2. t2 :τ
,

Γ;∆` ?:1
,

Γ;∆` t1 :τ1 Γ;∆` t2 :τ2

Γ;∆` 〈t1, t2〉:τ1 ×τ2

,
Γ;∆` t :τ1 ×τ2

Γ;∆` fst t :τ1

,
Γ;∆` t :τ1 ×τ2

Γ;∆` snd t :τ2

,

Γ, x :σ; ∆` t :τ

Γ;∆` λx :σ. t :σ→ τ
,

Γ;∆` t :σ→ τ Γ;∆` v :σ

Γ;∆` tv :τ
.

For each operation op : β;α1, . . . ,αn, we define a computation term genop,

called the generic effect of op [PP03], defined by

genop =def λx :β. opx(xi. returninji〈xi〉)i :β→ F(
∏
α1 +·· ·+∏

αn) ,

where
∏
α abbreviates α1 ×·· ·×αn.
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Example 4.19 Corresponding generic effects for state are

genlookup =def λ`:loc. lookup`(d. returnd):loc→ Fdat

and

genupdate =def λ`:loc,d :dat. update`,d(return?):loc→dat→ F1 .

Usually, one writes !` instead of genlookup` to denote a computation that returns

the datum stored in `, and ` := d instead of (genupdate`)d to denote a computation

that sets the location ` to d and returns an element of the unit type.

Value types σ are interpreted by sets �σ�, while computation types τ are inter-

preted by models �τ� of the countable Lawvere theory L, induced by the infinitary

equational theory, generated by the effect theory Teff.

The value types are interpreted in the obvious way, with the type Uτ being

interpreted by U�τ�, where U : ModL(Set) → Set is the forgetful functor. The

computation types are interpreted by

�Fσ� = F�σ� ,

�1� = 1 ,

�τ1 ×τ2� = �τ1� ×�τ2� ,

�σ→ τ� = �τ��σ� ,

where F is the free model functor, 1 is the final model, and the models M1 ×M2

and MA are defined as in Section 2.3.

Contexts x1 :σ1, . . . , xn :σn are interpreted by a set �σ1� × · · ·×�σn�, while con-

texts y1 :τ1, . . . , yn :τn are interpreted by a set U�τ1� × · · ·×U�τn�.
Value terms Γ;∆` v :σ are interpreted by functions �v� : �Γ� ×�∆� → �σ� and

computation terms Γ;∆` t :τ are interpreted by functions �t� : �Γ� ×�∆� →U�τ�.
all defined mutually recursively on the typing judgement by:

�x1 :σ1, . . . , xn :σn; ∆` xi :σi� = pri ◦pr1 ,

�Γ;∆` f(v):β� = �f� ◦ �v� ,

�Γ;∆` ?:1� =!�Γ�×�∆� ,
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where !�Γ�×�∆� : �Γ� ×�∆� → 1 is the unique map to the final object,

�Γ;∆` 〈v1,v2〉:σ1 ×σ2� = 〈�v1�,�v2�〉 ,

�Γ;∆` fstv :σ1� = pr1 ◦�v� ,

�Γ;∆` sndv :σ2� = pr2 ◦�v� ,

�Γ;∆` inlv :σ1 +σ2� = in1 ◦�v� ,

�Γ;∆` inrv :σ1 +σ2� = in2 ◦�v� ,

�Γ;∆` thunk t :Uτ� = �t� ,

�Γ;∆` forcev :τ� = �v� ,

�Γ; y1 :τ1, . . . , yn :τn ` yi :τi� = pri ◦pr2 ,

�Γ;∆` opv(xi. ti)i :τ� = 〈γ,δ〉 7→ op�τ�(�v�(γ,δ), �̂t1�, . . . , �̂tn�) ,

where �̂ti� ∈U�τ��αi� is the transpose of �ti�(γ,−,δ) : �αi� →U�τ�,

�Γ;∆` if rel(v)then t1 else t2 :τ� = 〈γ,δ〉 7→

�t1�(γ,δ) if �v�(〈γ,δ〉) ∈ �rel�
�t2�(γ,δ) otherwise

�Γ;∆` returnv :Fσ� = η�σ� ◦�v� ,

�Γ;∆` t tox :σ. t′ :τ� = �t′�† ◦〈id�Γ�×�∆� ,�t�〉 ,

�Γ;∆` zerov :τ� = ¡U�τ� ◦�v� ,

where ¡U�τ� : 0→U�τ� is the unique map from the initial object,

�Γ;∆` matchvwithinlx1 :σ1. t1, inr x2 :σ2. t2 :τ� = [�t1�,�t2�]◦ψ◦〈prj1,�v�,prj2〉 ,

where [�t1�,�t2�] : �σ1�+�σ2� →U�τ� is the co-tuple of �t1� and �t2�, and ψ is the

canonical isomorphism

�Γ� × (�σ1� +�σ2�)×�∆� → �Γ� ×�σ1� ×�∆� +�Γ� ×�σ2� ×�∆� ,

�Γ;∆` ?:1� =!�Γ�×�∆� ,

�Γ;∆` 〈t1, t2〉:τ1 ×τ2� = 〈�t1�,�t2�〉 ,

�Γ;∆` fst t :τ1� = pr1 ◦�t� ,

�Γ;∆` snd t :τ2� = pr2 ◦�t� ,

�Γ;∆` λx :σ. t :σ→ τ� = �̂t� ,

�Γ;∆` tv :τ� = ev�σ�,U�τ� ◦〈�t�,�v�〉 ,
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where ev�σ�,U�τ� : U�τ��σ� ×�σ� →U�τ� is the evaluation map.

Remark 4.20 Computation terms can also be interpreted by morphisms in the

co-Kleisli category of the adjunction F a U , as their interpretations are of the

form A×UM →UN, where A =∏
i�σi� and UM =U

∏
j�τ j� ∼=

∏
j U�τ j�. By trans-

position, we get a morphism of the form UM →U(N A), and by adjunction to one

of the form FUM → N A, which is a morphism in the co-Kleisli category. This

differs from the standard interpretation of effectful call-by-value computations,

which uses the Kleisli category [Mog91].

4.3 Judgements

Approaches to reasoning about computations can be grouped into two different

classes [Pnu77]. On one hand, we have endogenous approaches, where the valid-

ity t Íϕ of propositions ϕ is studied with regard to a computation t, for example

as in Hennessy-Milner logic [HM85]. On the other hand, we have exogenous ap-

proaches, where computations occur inside propositions, and the validity ` ϕ is

global, for example as in Pitts’s evaluation logic [Pit91].

Because we strive to obtain a very general logic, we take the exogenous ap-

proach: it can express the endogenous one by translating t Í ϕ to ` ϕ∗(t) for a

suitable predicate ϕ∗. For that reason, we find it convenient for our logic to have

predicates in addition to propositions.

Definition 4.21 Take a countably infinite set of predicate variables P. Then the

sets of propositions ϕ and predicates π is given by the following grammar:

ϕ ::=π(v; t) | rel(v) | v1 =σ v2 | t1 =τ t2 |
> | ϕ1 ∧ϕ2 | ⊥ | ϕ1 ∨ϕ2 | ϕ1 ⇒ϕ2 |
∀x :σ. ϕ | ∃x :σ. ϕ | ∀y:τ. ϕ | ∃y:τ. ϕ | ,

π ::= P | (x :σ; y:τ). ϕ | νP :(σ;τ). π | µP :(σ;τ). π .

Most of the propositions and predicates represent standard logical construc-

tions. A proposition π(v; t) represents an application of a predicate π to value

terms v and computation terms t, while rel(v) represents an application of a re-

lation symbol rel:(β) ∈Σbase. We define negation by ¬ϕ=def ϕ⇒⊥.
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Predicates are constructed using predicate variables, abstracted propositions,

or fixed point constructors. The main purpose of the latter is to express various

global modalities.

For distinct predicate variables P, predicates π, and a proposition ϕ, we de-

fine ϕ[π/P] to be the proposition, obtained by the standard simultaneous substi-

tution of variables Pi by πi in ϕ. A predicate π[π/P] is defined analogously.

Definition 4.22 A variable P is positive (negative) in ϕ, if:

• it does not occur in ϕ;

• ϕ is of the form π(v; t), and P is positive (negative) in π;

• ϕ is of the form ϕ1∧ϕ2 or ϕ1∨ϕ2 and P is positive (negative) in ϕ1 and ϕ2;

• ϕ is of the form ϕ1 ⇒ ϕ2 and P is negative (positive) in ϕ1 and positive

(negative) in ϕ2;

• ϕ is of the form ∀x :σ. ϕ′, ∃x :σ. ϕ′, ∀y :τ. ϕ′, or ∃y :τ. ϕ′ and P is positive

(negative) in ϕ′;

and positive (negative) in π, if

• it is equal to π;

• π is of the form (x :σ; y:τ). ϕ, and P is positive (negative) in ϕ;

• π is of the form νP ′ : (σ;τ). π′ or µP ′ : (σ;τ). π′ for some P ′ 6= P and P is

positive (negative) in π′.

A predicate context Π is list of distinct predicate variables P :prop(σ;τ), each

paired with a list of value types σ and a list of computation types τ.

Definition 4.23 Proposition typing judgement Γ;∆;Π` ϕ :prop states that in a

value context Γ, a computation context ∆, and a predicate context Π, a proposi-

tion ϕ is well-typed. Predicate typing judgement Γ;∆;Π` π:prop(σ;τ) states the

analogue for a predicate π. The typing judgements are given inductively by the

following rules:
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Γ;∆` v :σ Γ;∆` t :τ Γ;∆;Π` π:prop(σ;τ)

Γ;∆;Π` π(v; t):prop
,

Γ;∆` v :β

Γ;∆;Π` rel(v):prop
(rel:(β) ∈Σbase) ,

Γ;∆` v1 :σ Γ;∆` v2 :σ

Γ;∆;Π` v1 =σ v2 :prop
,

Γ;∆` t1 :τ Γ;∆` t2 :τ

Γ;∆;Π` t1 =τ t2 :prop
,

Γ;∆;Π` >:prop
,

Γ;∆;Π` ϕ1 :prop Γ;∆;Π` ϕ2 :prop

Γ;∆;Π` ϕ1 ∧ϕ2 :prop
,

Γ;∆;Π` ⊥:prop
,

Γ;∆;Π` ϕ1 :prop Γ;∆;Π` ϕ2 :prop

Γ;∆;Π` ϕ1 ∨ϕ2 :prop
,

Γ;∆;Π` ϕ1 :prop Γ;∆;Π` ϕ2 :prop

Γ;∆;Π` ϕ1 ⇒ϕ2 :prop
,

Γ, x :σ; ∆;Π` ϕ:prop

Γ;∆;Π` ∀x :σ. ϕ:prop
,

Γ, x :σ;∆;Π` ϕ:prop

Γ;∆;Π` ∃x :σ. ϕ:prop
,

Γ;∆, y:τ; Π` ϕ:prop

Γ;∆;Π` ∀y:τ. ϕ:prop
,

Γ;∆, y:τ; Π` ϕ:prop

Γ;∆;Π` ∃y:τ. ϕ:prop
,

Γ;∆;Π` P :prop(σ;τ)
(P :prop(σ;τ) ∈Π) ,

Γ, x :σ; ∆, y:τ; Π` ϕ:prop

Γ;∆;Π` (x :σ; y:τ). ϕ:prop(σ;τ)
,

Γ;∆;Π,P :prop(σ;τ)` π:prop(σ;τ)

Γ;∆;Π` νP :(σ;τ). π:prop(σ;τ)
(P is positive in π) ,

Γ;∆;Π,P :prop(σ;τ)` π:prop(σ;τ)

Γ;∆;Π` µP :(σ;τ). π:prop(σ;τ)
(P is positive in π) .

When any of the contexts is empty, we also omit the corresponding semicolon.

Note that there is an evident inclusion taking Γ` ϕ:form into Γ;∆;Π` ϕ:prop,

hence we treat base formulae as a subset of the propositions of the logic.
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Having given the syntax of propositions and predicates, we describe judge-

ments of the logic. These are of the form

Γ;∆;Π |Ψ` ϕ ,

where Ψ is a set of hypotheses ϕ1, . . . ,ϕn and ϕ is the conclusion, with all well-

typed propositions in the contexts Γ;∆;Π. We write Γ;∆;Π ` ϕ when the set of

hypotheses is empty.

We interpret predicate contexts

Π= P1 :prop(σ1;τ1), . . . ,Pn :prop(σn;τn)

by sets

�Π� =P(�σ1� ×U�τ1�)×·· ·×P(�σn� ×U�τn�) .

To interpret predicate fixed points νP : (σ;τ). ϕ and µP : (σ;τ). ϕ we are going

to employ an easy adaptation of Tarski’s theorem with parameters, which states

that every monotone map on a complete lattice has a greatest post-fixed point

and a least pre-fixed point [Tar55].

Theorem 4.24 Take a map F : P(A1)×·· ·×P(An)×P(A)→P(A), monotone in the

last argument. Then, there exists maps

νF : P(A1)×·· ·×P(An)→P(A) ,

and

µF : P(A1)×·· ·×P(An)→P(A)

such that:

• for any U ∈P(A1)×·· ·×P(An), the map F(U ,−) : P(A)→P(A) has a greatest

post-fixed point νF (U) and a least pre-fixed point µF (U);

• if F is monotone (anti-monotone) in P(A i), then so are νF and µF .

Then, we interpret propositions Γ;∆;Π` ϕ:prop by subsets

�ϕ� ⊆ �Γ� ×�∆� ×�Π� ,

and predicates Γ;∆;Π` π:prop(σ;τ) by maps

�ϕ� : �Γ� ×�∆� ×�Π� →P(�σ� ×U�τ�) ,
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defined recursively on the derivation of the typing judgement.

Propositions are interpreted as in multi-sorted first-order theories in Sec-

tion 2.2, with the predicate application interpreted by

�Γ;∆;Π` π(v; t):prop� = {〈γ,δ,U〉 ∈ �Γ�×�∆�×�Π� | 〈�v�,�t�〉(γ,δ) ∈ �π�(γ,δ,U)} ,

while predicates Γ;∆; (P j : prop(σ j;τ j)) j ` π : prop(σ;τ) are interpreted as fol-

lows:

�Pi� = pri ◦pr3 ,

�(x :σ; y:τ). ϕ� = 〈γ,δ,U〉 7→ {〈γ′,δ′〉 | 〈γ,γ′,δ,δ′,U〉 ∈ �ϕ�} ,

�νP :(σ;τ). π� = 〈γ,δ,U〉 7→

ν�π�(γ,δ,U ,−) if �π�(γ,δ,U ,−) is monotone ,

; otherwise ,

�µP :(σ;τ). π� = 〈γ,δ,U〉 7→

µ�π�(γ,δ,U ,−) if �π�(γ,δ,U ,−) is monotone ,

�σ� ×U�τ� otherwise .

Lemma 4.25 If a predicate variable P is positive (negative) in

Γ;∆;Π,P :prop(σ;τ)` π:prop(σ′;τ′) ,

then for any 〈γ,δ,U〉 ∈ �Γ� ×�∆� ×�Π�, the map

�π�(γ,δ,U ,−) : P(�σ� ×U�τ�)→P(�σ′� ×U�τ′�)

is monotone (anti-monotone).

If in addition, σ=σ′, τ= τ′, and P is positive in π, then

�νP :(σ;τ). π�(γ,δ,U) and �µP :(σ;τ). π�(γ,δ,U)

are the greatest and least fixed points of �π�(γ,δ,U ,−).

Proof The proof proceeds by a straightforward induction on the structure of

the predicate in question, employing Theorem 4.24 to show that the condition of

monotonicity in the definition of interpretation of predicate fixed points is indeed

satisfied. ä

Definition 4.26 A judgement Γ;∆;Π |ϕ1, . . . ,ϕn ` ϕ is sound if

n⋂
i=1

�ϕi� ⊆ �ϕ� .
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Reasoning rules of the logic

The logic for algebraic effects is the smallest collection of judgements closed under

the reasoning rules listed in this chapter. We write Γ;∆;Π | Ψ `L ϕ when the

judgement Γ;∆;Π |Ψ` ϕ is in the logic for algebraic effects.

For clarity, we split the reasoning rules into the following groups:

• reasoning rules for propositions and predicates,

• reasoning rules describing equality,

• equations for call-by-push-value constructs,

• two algebraic principles describing universality of the free model.

In all the rules, we omit the hypotheses that ensure that judgements are well-

typed.

5.1 Propositions and predicates

First, we give the standard reasoning rules for a classical first-order logic with

fixed points:

• hypothesis:

Γ;∆;Π |Ψ,ϕ`L ϕ
,

• substitution of value terms:

x :σ;∆;Π |Ψ`L ϕ

Γ;∆;Π |Ψ[v/x]`L ϕ[v/x]
(Γ;∆;Π` v :σ) ,

63
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• substitution of computation terms:

Γ; y:τ;Π |Ψ`L ϕ

Γ;∆;Π |Ψ[t/y]`L ϕ[t/y]
(Γ;∆;Π` t :τ) ,

• substitution of predicates:

Γ;∆; (Pi :prop(σi;τi))i |Ψ`L ϕ

Γ;∆;Π |Ψ[π/P]`L ϕ[π/P]
(Γ;∆;Π` πi :prop(σi;τi) (1É i É n)) ,

• truth and falsehood:

Γ;∆;Π |Ψ`L >
,

Γ;∆;Π |Ψ,⊥`L ϕ
,

• conjunction introduction and elimination:

Γ;∆;Π |Ψ`L ϕ1 Γ;∆;Π |Ψ`L ϕ2

Γ;∆;Π |Ψ`L ϕ1 ∧ϕ2

,
Γ;∆;Π |Ψ`L ϕ1 ∧ϕ2

Γ;∆;Π |Ψ`L ϕ1

,

Γ;∆;Π |Ψ`L ϕ1 ∧ϕ2

Γ;∆;Π |Ψ`L ϕ2

,

• disjunction introduction and elimination:

Γ;∆;Π |Ψ`L ϕ1

Γ;∆;Π |Ψ`L ϕ1 ∨ϕ2

,
Γ;∆;Π |Ψ`L ϕ2

Γ;∆;Π |Ψ`L ϕ1 ∨ϕ2

,

Γ;∆;Π |Ψ,ϕ1 `L ϕ Γ;∆;Π |Ψ,ϕ2 `L ϕ

Γ;∆;Π |Ψ,ϕ1 ∨ϕ2 `L ϕ
,

• implication introduction and elimination:

Γ;∆;Π |Ψ,ϕ1 `L ϕ2

Γ;∆;Π |Ψ`L ϕ1 ⇒ϕ2

,
Γ;∆;Π |Ψ`L ϕ1 ⇒ϕ2 Γ;∆;Π |Ψ`L ϕ1

Γ;∆;Π |Ψ`L ϕ2

,

• introduction and elimination of universal quantification over values:

Γ, x :σ; ∆;Π |Ψ`L ϕ

Γ;∆;Π |Ψ`L ∀x :σ. ϕ
,

Γ;∆;Π |Ψ`L ∀x :σ. ϕ

Γ;∆;Π |Ψ`L ϕ[v/x]
(Γ;∆` v :σ) ,
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• introduction and elimination of universal quantification over computations:

Γ;∆, y:τ; Π |Ψ`L ϕ

Γ;∆;Π |Ψ`L ∀y:τ. ϕ
,

Γ;∆;Π |Ψ`L ∀y:τ. ϕ

Γ;∆;Π |Ψ`L ϕ[t/y]
(Γ;∆` y:τ) ,

• introduction and elimination of existential quantification over values:

Γ;∆;Π |Ψ`L ϕ[v/x]

Γ;∆;Π |Ψ`L ∃x :σ. ϕ
(Γ;∆` v :σ) ,

Γ;∆;Π |Ψ`L ∃x :σ. ϕ′ Γ, x :σ; ∆;Π |Ψ,ϕ′ `L ϕ

Γ;∆;Π |Ψ`L ϕ
,

• introduction and elimination of existential quantification over computa-

tions:

Γ;∆;Π |Ψ`L ϕ[t/y]

Γ;∆;Π |Ψ`L ∃y:τ. ϕ
(Γ;∆` t :τ) ,

Γ;∆, y:τ; Π |Ψ,ϕ′ `L ϕ Γ;∆;Π |Ψ`L ∃y:τ. ϕ′

Γ;∆;Π |Ψ`L ϕ
,

• reductio ad absurdum:
Γ;∆;Π |Ψ,¬ϕ`L ⊥
Γ;∆;Π |Ψ`L ϕ

.

• application of abstracted propositions:

Γ;∆;Π |Ψ`L ((x :σ; y:τ). ϕ)(v; t)⇔ϕ[v/x, t/y]
,

where ϕ⇔ϕ′ =def (ϕ⇒ϕ′)∧ (ϕ′ ⇒ϕ),

• greatest fixed point of a predicate:

Γ;∆;Π | (νP :(σ;τ). π)(v; t)`L π[νP :(σ;τ). π/P](v; t)
,

Γ, x :σ; ∆, y:τ; Π |π′(x; y)`L π[π′/P](x; y)

Γ, x :σ; ∆, y:τ; Π |π′(x; y)`L (νP :(σ;τ). π)(x; y)
,
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• least fixed point of a predicate:

Γ;∆;Π |π[µP :(σ;τ). π/P](v; t)`L (µP :(σ;τ). π)(v; t)
,

Γ, x :σ; ∆, y:τ; Π |π[π′/P](x; y)`L π
′(x; y)

Γ, x :σ; ∆, y:τ; Π | (µP :(σ;τ). π)(x; y)`L π
′(x; y)

.

5.2 Equality

Then, we state the usual structural properties of equality:

• reflexivity, symmetry, and transitivity of value equality:

Γ;∆;Π |Ψ`L v =σ v
(Γ;∆;Π |Ψ` v :σ),

Γ;∆;Π |Ψ`L v =σ v′

Γ;∆;Π |Ψ`L v′ =σ v
,

Γ;∆;Π |Ψ`L v =σ v′ Γ;∆;Π |Ψ`L v′ =σ v′′

Γ;∆;Π |Ψ`L v =σ v′′
,

• reflexivity, symmetry, and transitivity of computation equality:

Γ;∆;Π |Ψ`L t =τ t
(Γ;∆` t :τ) ,

Γ;∆;Π |Ψ`L t =τ t′

Γ;∆;Π |Ψ`L t′ =τ t
,

Γ;∆;Π |Ψ`L t =τ t′ Γ;∆;Π |Ψ`L t′ =τ t′′

Γ;∆;Π |Ψ`L t =τ t′′
,

• replacement for values:

Γ;∆;Π |Ψ`L v =σ v′ Γ;∆;Π |Ψ`L ϕ[v/x]

Γ;∆;Π |Ψ`L ϕ[v′/x]
,

• replacement for computations:

Γ;∆;Π |Ψ`L t =τ t′ Γ;∆;Π |Ψ`L ϕ[t/y]

Γ;∆;Π |Ψ`L ϕ[t′/y]
.

Since the context remains fixed in the replacement rules, we have to give an

extensionality rule for each construct that employs variable binding:
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• extensionality of operations:

Γ, xi :αi; ∆;Π |Ψ`L ti =τ t′i (1É i É n)

Γ;∆;Π |Ψ`L opv(xi. ti)i =τ opv(xi. t′i)i

(op:β;α1, . . . ,αn) ,

• extensionality of sequencing:

Γ, x :σ; ∆;Π |Ψ`L t′ =τ t′′

Γ;∆;Π |Ψ`L t tox :σ. t′ =τ t tox :σ. t′′
,

• extensionality of pattern matching:

Γ, x1 :σ1; ∆;Π |Ψ`L t1 =τ t′1 Γ, x2 :σ2; ∆;Π |Ψ`L t2 =τ t′2

Γ;∆;Π |Ψ`L matchvwithinlx1. t1, inr x2. t2 =τ matchvwithinlx1. t′1, inr x2. t′2
,

• extensionality of abstraction:

Γ, x :σ; ∆;Π |Ψ`L t =τ t′

Γ;∆;Π |Ψ`L λx :σ. t =σ→τ λx :σ. t′
.

As in the a-calculus, we inherit propositions from the base theory Tbase and

instantiate equations from the effect theory Teff:

• inheritance from the base theory:

Γ |Ψ`Tbase ϕ

Γ;∆;Π |Ψ,Ψ′ `L ϕ
,

• inheritance from the effect theory:

Γ; (zi :(αi))i `Teff e = e′ (ϕ)

Γ;∆;Π |Ψ,ϕ`L e[(xi). ti/zi]i =τ e′[(xi). ti/zi]i

, (Γ, xi :αi; ∆` ti :τ)i

where the instantiation Γ;∆ ` e[(xi). ti/zi]i :τ of an effect term Γ; Z ` e by com-

putation terms Γ, xi :αi; ∆ ` ti : τ, for each zi : (αi) ∈ Z, is defined structurally

by

z j(v)[(xi). ti/zi]i = t j[v/x j] ,

opv(x′
j. t′j) j[(xi). ti/zi]i = opv(x′

j. t′j[(xi). ti/zi]i) j .

Note that in the a-calculus, we combined the rule for inheritance from the

base theory with the congruence rule for the return construct, as the base theory

consisted of exactly all equations between base terms. Now, there are more value

terms than just the base terms, so the two rules have to be split.
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5.3 Call-by-push-value constructs

All the value and computation terms, except for conditionals and sequencing, are

described by the standard call-by-push-value equations [Lev06a]:

• η-equivalence for the value unit:

Γ;∆;Π |Ψ`L v =1 ?
,

• β-equivalences for value products:

Γ;∆;Π |Ψ`L fst〈v1,v2〉 =σ1 v1

,
Γ;∆;Π |Ψ`L snd〈v1,v2〉 =σ2 v2

,

• η-equivalence for value products:

Γ;∆;Π |Ψ`L 〈fstv,sndv〉 =σ1×σ2 v
,

• η-equivalence for the computation unit:

Γ;∆;Π |Ψ`L t =1 ?
,

• β-equivalences for computation products:

Γ;∆;Π |Ψ`L fst〈t1, t2〉 =τ1
t1

,
Γ;∆;Π |Ψ`L snd〈t1, t2〉 =τ2

t2

,

• η-equivalence for computation products:

Γ;∆;Π |Ψ`L 〈fst t,snd t〉 =τ1×τ2
t

,

• β-equivalence for thunks:

Γ;∆;Π |Ψ`L force(thunk t)=τ t
,

• η-equivalence for thunks:

Γ;∆;Π |Ψ`L thunk(forcev)=Uτ v
,
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• β-equivalence for functions:

Γ;∆;Π |Ψ`L (λx :σ. t)v =τ t[v/x]
,

• η-equivalence for functions:

Γ;∆;Π |Ψ`L λx :σ. tx =σ→τ t
,

• emptiness of the zero type:

Γ;∆;Π |Ψ`L ∀x :0. ⊥
,

• β-equivalences for value sums:

Γ;∆;Π |Ψ`L matchinlvwithinlx1. t1, inr x2. t2 =τ t1[v/x1]
,

Γ;∆;Π |Ψ`L matchinrvwithinlx1. t1, inr x2. t2 =τ t2[v/x2]
,

• cases of value sums:

Γ;∆;Π |Ψ`L (∃x1 :σ1. v =σ1+σ2 inlx1)∨ (∃x2 :σ2. v =σ1+σ2 inr x2)

• β-equivalences for conditionals:

Γ;∆;Π |Ψ`L rel(v)

Γ;∆;Π |Ψ`L if rel(v)then t1 else t2 =τ t1

,

Γ;∆;Π |Ψ`L ¬rel(v)

Γ;∆;Π |Ψ`L if rel(v)then t1 else t2 =τ t2

.

Note that η-equivalence for conditionals, which states

Γ;∆;Π |Ψ`L if rel(v)then telse t =τ t
,

is provable using reductio ad absurdum.

Then, we specify the behaviour of operations on computation types:
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• operations on product types:

(op:β;α1, . . . ,αn)

Γ;∆;Π |Ψ`L 〈opv(xi. t1i)i,opv(xi. t2i)i〉 =τ1×τ2
opv(xi. 〈t1i, t2i〉)i

,

• operations on function types:

Γ;∆;Π |Ψ`L λx :σ. opv(xi. ti)i =σ→τ opv(xi. λx :σ. ti)i

(op:β;α1, . . . ,αn) .

Note that the trivial behaviour of operations on the unit computation type 1 is

already determined by η-equivalence Γ;∆;Π |Ψ`L t =1 ?.

Finally, we describe the behaviour of sequencing with equational schemas,

which are a generalisation of the ones in the a-calculus:

• β-equivalence of sequencing:

Γ;∆;Π |Ψ`L returnv tox :σ. t =τ t[v/x]
,

• algebraicity of operations:

Γ;∆;Π |Ψ`L opv(xi. ti)i tox :σ. t =τ opv(xi. ti tox :σ. t)i

(op:β;α1, . . . ,αn) .

We omit η-equivalence for sequencing from the axioms as it is derivable (see

Proposition 6.1).

5.4 Algebraic principles

In contrast to the a-calculus, the logic is complex and its terms do not have a

canonical form. Hence, instead of structural induction on canonical forms, we

employ a principle of computational induction, which is motivated by Proposi-

tion 3.19 and states that every computation term of type Fσ is either a returned

value, or built from other computation terms using operations.

Then, for a predicate Γ;∆;Π` π:prop(Fσ), we have:

• principle of computational induction:

Γ, x :σ;∆;Π`L π(returnx) Cop (op:β;α1, . . . ,αn ∈Σeff)

Γ;∆;Π`L π(t)
(Γ;∆` t :Fσ) ,
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where the induction case Cop is an abbreviation for

Γ, x :β; ∆, (yi :αi → Fσ)i; Π | (∀xi :αi. π(yixi))i `L π(opx(xi. yixi)i) .

The induction hypotheses ∀xi :αi. π(yixi) state that all the continuations yi of

opx(xi. yixi)i satisfy π for all outcomes xi of the triggered effect.

Example 5.1 For exceptions, the effect signature Σeff contains a single nullary

operation raise:exc, thus computational induction is of the form

Γ, x :σ;∆;Π`L π(returnx) Γ,exc:exc;∆;Π | · `L π(raiseexc)

Γ;∆;Π`L π(t)

and states that if π holds for all returned values and for all raised exceptions,

then it holds for all computations.

Example 5.2 For nondeterminism, the effect signature Σeff contains a single

binary operation or :2 with the corresponding induction case Cor

Γ;∆, y1 :Fσ, y2 :Fσ;Π |π(y1),π(y2)`L π(or(y1, y2)) .

This states that if π holds for both y1 and y2, it holds for or(y1, y2) as well.

Example 5.3 For global state, the induction case Clookup for lookup:loc;dat is of

the form

Γ,`:loc;∆, y:dat→ Fσ;Π | ∀d :dat. π(yd)`L π(lookup`(d. yd))

and states that if π holds for yd for any outcome d, then it holds for lookup`(d. yd)

for all locations `.

The case Cupdate for update:loc,dat;1 is of the form

Γ,`:loc,d :dat;∆, y:Fσ;Π |π(y)`L π(update`,d(y))

and states that if π holds for y, it holds for update`,d(y) for all locations ` and

data d.

Note that the finiteness of the signature Σeff is crucial in the formulation of

the induction principle, as an infinite signature would lead to an infinite number

of hypotheses Cop in the induction rule.

We next present a free model principle that expresses the universal property

of the free model: for any set A, any model M, and any map f : A →UM, there
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exists a unique homomorphism f̂ : F A → M such that U f̂ ◦ηA = f . To state this

in our logic, we first describe models and homomorphisms.

To express the existence of a homomorphism in the logic, we employ the ex-

istential quantifier over the function type. But as function types have compu-

tation types for codomains, we have to limit the models to ones with carriers of

the form Uτ rather than arbitrary sets. Although this is cumbersome, Proposi-

tion 6.6 shows that if we give a model on Fσ, where operations map returned

values into returned values, and if we have a map into Fσ, with the image re-

stricted to returned values, then the image of the induced homomorphism is also

restricted to returned values. This enables us to simulate a model on some sets,

for example the one used in Lemma 6.18. It is unlikely, however, that all models,

in particular the ones with infinitary operations, can be simulated in this way.

Fix contexts Γ and ∆, which will serve as parameters. Recall that a model is

given by its carrier UM together with appropriate maps

opM : �β� ×∏
i

UM�αi� →UM

for each op:β;α1, . . . ,αn ∈Σeff. Such a map is described by a computation term

Γ, x :β; ∆, (yi :αi → τ)i ` top :τ .

Next, we state when a given family of terms {top}op satisfies all the equations

Γ′; Z′ ` e = e′ (ϕ) of the effect theory Teff. Take any effect term Γ′; Z′ ` e and a

context ∆′ consisting of computation variables y′j :α j → τ for each effect variable

z′j :(α j) ∈ Z′. Then, we define a computation term Γ,Γ′;∆,∆′ ` e[top/op]op :τ by

z′j(v)[top/op]op = y′jv ,

opv(xi. e i)i[top/op]op = top[v/x, (λxi :αi. e i[top/op]op/yi)i] .

Then, we define the proposition {top :τ}op∈Σeff models Teff to be the conjunction∧
Γ′;Z′`Teff e=e′ (ϕ)

ϕ⇒∀y′. e[top/op]op =τ e′[top/op]op .

For y:σ→ τ and ŷ:UFσ→ τ, we define the proposition ŷ extends y to be

∀x :σ. ŷ(thunkreturnx)= yx ,

and the proposition ŷhomomorphism to be the conjunction∧
op:β;α1,...,αn∈Σeff

∀x :β. ∀(y′i :α1 → τ)i. ŷ(thunkopx(x′
i. y′ix

′
i)i)=τ top[(λx′

i :αi. ŷ(thunk y′ix
′
i))/yi]i .

Then, we have
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• free model principle:

Γ;∆;Π |Ψ`L {top :τ}op∈Σeff models Teff

Γ;∆;Π |Ψ`L ∀y:σ→ τ. ∃ ŷ:UFσ→ τ. ŷ extends y∧ ŷhomomorphism
.

As in the case of principle of computational induction, the finiteness of both the

signature Σeff and the effect theory Teff is crucial in the formulation of the free

model principle.

One might expect the statement of the uniqueness of the induced homomor-

phism. However, as Proposition 6.5 shows, this is a consequence of the principle

of computational induction.

5.5 Soundness

Proposition 5.4 If Γ;∆;Π |ϕ1, . . . ,ϕn `L ϕ holds, then

n⋂
i=1

�ϕi�(γ,δ,U)⊆ �ϕ�(γ,δ,U)

for all 〈γ,δ,U〉 ∈ �Γ� ×�∆� ×�Π�.
Proof We proceed by an induction on the derivation of Γ;∆;Π |ϕ1, . . . ,ϕn `L ϕ.

We omit the standard cases where we have used a reasoning rule for equality,

or any of the standard rules for propositions and predicates. Next, the rules

for the greatest fixed point are sound since �νP : (σ;τ). π� is defined to be the

greatest post-fixed point, and hence the greatest fixed point of the operator on

P(�σ�×U�τ�), induced by �π�. A similar argument holds for the least fixed point.

Then, it is straightforward to show the soundness of most of the equations for

call-by-push-value constructs [Lev06a]. To show the soundness of the equation

that describes the behaviour of an operation op : β;α1, . . . ,αn on product type

τ1 ×τ2, we take an arbitrary 〈γ,δ〉 ∈ �Γ� ×�∆�. Then, we have

�〈opv(xi. t1i)i,opv(xi. t2i)i〉�(γ,δ)

= 〈op�τ1�(�v�(γ,δ), ��t1i�)i,op�τ2�(�v�(γ,δ), ��t2i�)i〉 (by definition)

= op�τ1�×�τ2�(�v�(γ,δ),〈��t1i�, ��t2i�〉)i (by product model structure)

= �opv(xi. 〈t1i, t2i〉)i�(γ,δ) (by definition) .

The case for the definition of operations on σ→ τ proceeds similarly.
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The case of β-equivalence for sequencing is the same as in the a-calculus,

while the proof of algebraicity of operations proceeds as in the a-calculus, except

that we employ Proposition 4.15 instead of Lemma 2.33 to show that operations

commute with liftings.

To show the soundness of the induction principle for a predicate

Γ;∆;Π` π:prop(Fσ) ,

we fix 〈γ,δ,U〉 ∈ �Γ� × �∆� × �Π�. Then, the base case of the induction principle

shows that η : �σ� → UF�σ� is a composition of i : �σ� → �π�(γ,δ,U) and the in-

clusion j : �π�(γ,δ) →UF�σ�. The step case shows that �π�(γ,δ,U) has a model

structure, inherited from UF�σ�.

UF�σ� .....................
idUF�σ�

- UF�σ�

�σ�

η

6

i
- �π�(γ,δ,U)

j

6
..................ı̄ .................-

Because F�σ� is the free model on �σ�, there exists a unique

ı̄ : UF�σ� → �π�(γ,δ,U)

such that i = ı̄ ◦η. Since we have j ◦ ı̄ ◦η= j ◦ i = η, we get j ◦ ı̄ = idUF�σ� from the

universality of the model. Since j is a retraction and a monomorphism, it is an

isomorphism, and �π�(γ,δ,U)=UF�σ�.
Finally, the free model principle is, following its derivation, a direct translit-

eration of the universality of free models (without the guarantee of the unique-

ness), hence the proof of its soundness is straightforward. ä

Proposition 5.5 The equational theory, induced by the effect theory Teff, is non-

trivial if and only if the consistency proposition

∀x1, x2 :σ. returnx1 =Fσ returnx2 ⇒ x1 =σ x2

is sound for all value types σ.

Proof If the induced equational theory is non-trivial, the construction of the

free model implies that the unit map η�σ� : �σ� → UF�σ� is a monomorphism,

hence

�returnx1� = η�σ� ◦�x1� = η�σ� ◦�x2� = �returnx2�
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implies �x1� = �x2�. On the other hand, if the effect theory is trivial, the free

model collapses to a single point, and if �σ� has more than one point (if σ= 1+1,

for example), the unit map fails to be injective and the consistency proposition is

not sound. ä





Chapter 6

Development and applications of

the logic

After describing the logic, we collect a few examples of its use. We first go through

the properties of sequencing we proved in the a-calculus, restate them in a non-

schematic way and prove them using the principle of computational induction.

Next, we show some additional properties of the free model principle and define

local and global modalities. Finally, we give a conservative translation of Moggi’s

computational λ-calculus [Mog89], Hennessy-Milner logic [HM85], and Pitts’s

evaluation logic [Pit91] into our logic.

6.1 Sequencing

As in the a-calculus, η-equivalence and associativity of sequencing are derivable.

In addition, those properties can be stated in a stronger, non-schematic way.

Proposition 6.1 The following holds:

y:Fσ`L ytox. returnx =Fσ y .

Proof We proceed by the principle of computational induction. Take

π=def (y:Fσ). ytox. returnx =Fσ y .

Then, the base case x′ :σ`L π(returnx′) is equivalent to

x′ :σ`L returnx′ tox. returnx =Fσ returnx′ ,

which is derivable by the β-equivalence of the sequencing.

77



78 Chapter 6. Development and applications of the logic

For the step case for an operation op:β;α1, . . . ,αn, we have to show the valid-

ity of the judgement

x :β; (yi :αi → Fσ)i |ϕ1
op, . . . ,ϕn

op `L π(opx(xi. yixi)i) ,

where

ϕi
op =def ∀xi :αi. yixi tox. returnx =Fσ yixi .

Then, we get

Γ;∆`L opx(xi. yixi)i tox. returnx

=Fσ opx(xi. yixi tox. returnx) (by algebraicity of operations)

=Fσ opx(xi. yixi) (by the induction hypotheses) .

Hence, by the induction principle, we get y:Fσ`L π(y). ä
We can see that the proof resembles the one of Proposition 3.20, except that it

uses the principle of computational induction rather than the induction over the

structure of canonical forms. Similarly, we can prove a non-schematic version of

Proposition 3.21.

Proposition 6.2 The following holds:

y1 :Fσ1, y2 :σ1 → Fσ2, y:σ2 → τ`L

y1 tox1. (y2x1 tox2. yx2)= (y1 tox1. y2x1)tox2. yx2 .

In the a-calculus, the commutativity of sequencing is a consequence of the

commutativity of the effect theory. But in the logic, the effect theory is just a set

of equations. For that reason, it is possible that the induced equational theory

is commutative even though the effect theory does not contain all the equations

describing commutativity between operations. But since we cannot observe this

in the logic, we simplify things and restate the commutativity condition at any

given computation type. Then, the proof proceeds as in Proposition 3.23. In the

case that all the necessary commutativity equations are present in the effect the-

ory, this assumptions follow immediately by inheritance from the effect theory.

Proposition 6.3 If

x :β, x′ :β′; (yii′ :αi →α′
i′ → τ)1ÉiÉn,1Éi′Én′ `L

opx(xi. op′x′(x′
i′ . yii′xix′

i′)i′)i =τ op′x′(x′
i′ . opx(xi. yii′xix′

i′)i)i′
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holds for all operations op:β;α1, . . . ,αn and op′ :β′;α′
1, . . . ,α′

n′ , then

y1 :Fσ1, y2 :Fσ2, y:σ1 →σ2 → τ`L

y1 tox1. (y2 tox2. yx1x2)=τ y2 tox2. (y1 tox1. yx1x2)

is derivable.

In particular, the commutativity condition holds when the effect theory Teff

contains the equation

x :β; x′ :β′; (zii′ :(αi,α′
i′))1ÉiÉn,1Éi′Én′ `

opx(xi. op′x′(x′
i′ . zii′(xi, x′

i′))i′)i = op′x′(x′
i′ .opx(xi. zii′(xi, x′

i′))i)i′

for all operations op:β;α1, . . . ,αn and op′ :β′;α′
1, . . . ,α′

n′ in Σeff.

Finally, we show a logical counterpart to the fact that algebraic operations are

recoverable from their generic effects [PP03]. Although operations seem more

general, this is not surprising because the generic effect captures both the effect

and its outcome.

Proposition 6.4 The equation

Γ;∆`L opv(xi. ti)i =τ genop v tox. matchxwith(inji〈xi〉. ti)i

holds for an arbitrary operation symbol op:β;α1, . . . ,αn ∈Σeff.

Proof We have:

Γ;∆`L genop v tox. matchxwith(inji〈xi〉. ti)i

=τ opv(x j. returninj j〈x j〉) j tox. matchxwith(inji〈xi〉. ti)i

=τ opv(x j. returninj j〈x j〉tox. matchxwith(inji〈xi〉. ti)i) j

=τ opv(x j. matchinj j〈x j〉with(inji〈xi〉. ti)i) j

=τ opv(x j. t j) j .

ä

6.2 Free model principle

The free model principle does not state the universal property of the free model

in its entirety: it omits the uniqueness of the induced homomorphism because it

follows from the principle of induction.
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Proposition 6.5 Take ∆ containing y:σ→ τ, ŷ1 :UFσ→ τ, and ŷ2 :UFσ→ τ. As

in the statement of the free model principle, define

ϕm = {top :τ}op∈Σeff models Teff ,

ϕ1 = ŷ1 extends y∧ ŷ1 homomorphism ,

ϕ2 = ŷ2 extends y∧ ŷ2 homomorphism .

Then, we have

Γ;∆;Π |Ψ,ϕm,ϕ1,ϕ2 `L ∀y′ :Fσ. ŷ1(thunk y′)=τ ŷ2(thunk y′)

Proof We proceed by the principle of computational induction. For the base

case, we take y′ = returnx for some x :σ. By the definition of ŷj extends y for

j ∈ {1,2}, we get

Γ;∆;Π |Ψ,ϕm,ϕ1,ϕ2 `L ŷ1(thunkreturnx)=τ yx =τ ŷ2(thunkreturnx) .

Next, take an operation op:β;α1, . . . ,αn and assume that

ŷ1(thunk(y′ixi))=τ ŷ2(thunk(y′ixi))

for all y′i :αi → Fσ and xi :αi for 1É i É n. Then, by ŷj homomorphism for j ∈ {1,2},

we get

ŷ1(thunk(opx(xi. y′ixi)i))

=τ top[λxi :αi. ŷ1(thunk y′ixi)/yi]i

=τ top[λxi :αi. ŷ2(thunk y′ixi)/yi]i

=τ ŷ2(thunk(opx(xi. y′ixi)i)) ,

which proves the step case. ä

Although we can only give models on sets of the form U�τ� for some τ, we can

simulate a model on a set �σ′�. To do so, we give a model on UF�σ′� for which

the set of returned values from �σ′� is closed under operations.

Proposition 6.6 Take ∆ containing y :σ→ Fσ′ and ŷ :UFσ→ Fσ′. As before,
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define

ϕm = {top :Fσ′}op∈Σeff models Teff ,

ϕ= ŷ extends y∧ ŷhomomorphism ,

ϕ′ =∀x :σ. ∃x′ :σ′. yx =Fσ′ returnx′ ,

ϕop =∀x :β; y1 :α1 → Fσ′, . . . , yn :αn → Fσ′.
n∧

i=1
(∀xi :αi. ∃xi :σ′. yixi =Fσ′ returnxi)⇒∃x′ :σ′. top =Fσ′ returnx′ .

Then, we have

Γ;∆;Π |Ψ,ϕm,ϕ,ϕ′,
∧
op
ϕop `L ∀y′ :Fσ. ∃x′ :σ′. ŷ(thunk y′)= returnx′ .

Proof For the base case, we take y′ = returnx for some x :σ. By ŷ extends y, we

get

ŷ(thunk(returnx))=Fσ′ yx ,

hence by ϕ′, there exists x′ :σ′ such that

yx =Fσ′ returnx′ .

For the step case, take an operation op : β;α1, . . . ,αn and assume that for

1É i É n, y′i :αi → Fσ′ and xi :αi, there exists a x′i :σ
′ such that

ŷ(thunk(y′ixi))=Fσ′ returnx′i .

Then, by ŷhomomorphism, and by ϕop, there exists x′ :σ such that

ŷ(thunkopx(xi. y′ixi))=Fσ′ top[λxi :αi. ŷ(thunk y′ixi)/yi]i =Fσ′ returnx′ .

ä

6.3 Modalities

We define local modalities in order to reason about the structure of computations.

Note that because of the exogenous approach to logic, modalities are operators

on predicates, rather than propositions.

Definition 6.7 For a predicate π:prop(σ), a pureness necessity modality [↓] and

a pureness possibility modality 〈↓〉 are defined by:

[↓](π)=def (y:Fσ). ∀x :σ. y=Fσ returnx ⇒π(x) ,

〈↓〉(π)=def (y:Fσ). ∃x :σ. y=Fσ returnx∧π(x) .
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A pureness modality transforms a predicate on a value type σ into a predicate

on a computation type Fσ. The notation for the pureness modality follows the

notation for Moggi’s pureness predicate t↓σ, which is expressible in terms of the

pureness modality as 〈↓〉((x :σ). >)(t).

Definition 6.8 For an operation op:β;α1, . . . ,αn and a predicate

π:prop(β;α1 → τ, . . . ,αn → τ) .

an operation necessity modality [op] and an operation possibility modality 〈op〉
are defined by:

[op](π)=def (y:τ). ∀x :β, y1 :α1 → τ, . . . , yn :αn → τ. y=τ opx(xi. yixi)i ⇒π(x; y) ,

〈op〉(π)=def (y:τ). ∃x :β, y1 :α1 → τ, . . . , yn :αn → τ. y=τ opx(xi. yixi)i ∧π(x; y) .

Example 6.9 If we take the effect theory for exceptions, then [raise]((y :τ). ⊥)(t)

is equivalent to ∀exc :exc. ¬(t =τ raiseexc) and hence states that t does not raise

an exception. On the other hand, 〈raise〉((y :τ). >)(t) states that t does raise an

exception.

For a predicate π:prop(τ), we define [−](π) to be

(y:τ).
∧

op:β;α1,...,αn∈Σeff

[op]((x :β, y1 :α1 → τ, . . . , yn :αn → τ).
n∧

i=1
∀xi :αi. π(yixi))(y) ,

and 〈−〉(π) to be

(y:τ).
∨

op:β;α1,...,αn∈Σeff

〈op〉((x :β, y1 :α1 → τ, . . . , yn :αn → τ).
n∨

i=1
∃xi :αi. π(yixi))(y) .

Informally, we say that computation terms ti are immediate continuations

of opv(xi. ti)i. Then, we get the notion of a continuation by taking the reflexive

and transitive closure of the notion of the immediate continuations. A run of a

computation term t is a sequence of computation terms t = t1, t2, . . . , tn such that

ti is an immediate continuation of ti−1. These notions serve only to illustrate the

meaning of modalities, and should not be confused with continuations [FSDF93].

Then, intuitively, [−](π)(t) states that all immediate continuations of t satisfy

π, no matter what the outcome of the effect was, while 〈−〉(π)(t) states that there

exists an immediate continuation of t that satisfies π.
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Remark 6.10 The (immediately) derivable two-way introduction and elimina-

tion rules for necessity and possibility modalities are

Γ;∆, y:Fσ;Π |Ψ`L [↓](π)(y)

Γ, x :σ;∆;Π |Ψ[returnx/y]`L π(x)
===================================== ,

Γ;∆, y:Fσ;Π |Ψ,〈↓〉(π)(y)`L ϕ

Γ, x :σ;∆;Π |Ψ[returnx/y],π(x)`L ϕ[returnx/y]
====================================================

for pureness modalities, and

Γ;∆, y:τ;Π |Ψ`L [op](π)(y)

Γ, x :β;∆, y1 :α1 → τ, . . . , yn :αn → τ;Π |Ψ[opx(xi. yixi)i/y]`L π(x; y)
=========================================================================== ,

Γ;∆, y:τ;Π |Ψ,〈op〉(π)(y)`L ϕ

Γ, x :β;∆, y1 :α1 → τ, . . . , yn :αn → τ;Π |Ψ[opx(xi. yixi)i/y],π(x; y)`L ϕ[opx(xi. yixi)i/y]
=================================================================================================

for operation modalities, corresponding to op:β;α1, . . . ,αn ∈Σeff.

From the adjoint form of those rules, one can see that in the categorical ap-

proach to logic [Jac99], pureness and operation modalities are quantifiers corre-

sponding to the returning of values and to operations, respectively.

To extend local to global reasoning, we use predicate fixed points to define

global modalities.

Definition 6.11 For a predicate π : prop(τ), the global necessity modality � is

defined to be

�π=def νP :(τ). (y:τ). π(y)∧ [−](P)(y) ,

while the global possibility modality ♦ is defined to be

♦π=def µP :(τ). (y:τ). π(y)∨〈−〉(P)(y) .

From the introduction and elimination rules for predicate fixed points, we can

immediately derive the following rules for global modalities:

Γ;∆;Π |π′(y)`L π(y)∧ [−](π′)(y)

Γ;∆;Π |π′(y)`L �π(y)
,

Γ;∆;Π |�π(t)`L π(t)∧ [−]�π(t)
,

Γ;∆;Π |π(y)∨〈−〉(π′)(y)`L π
′(y)

Γ;∆;Π |♦π(y)`L π
′(y)

,
Γ;∆;Π |π(t)∨〈−〉(♦π)(t)`L (♦π)(t)

.
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Intuitively, �π(t) states that all continuations of t satisfy π, while ♦π(t) states

that there exists a continuation of t that satisfies π. Since continuations are

obtained by a reflexive and transitive closure of immediate continuations, we

may expect that the global modalities satisfy the rules of S4 modal logic.

Proposition 6.12 The following rules are derivable:

• (K)

Γ;∆;Π |�((y:τ). π1(y)⇒π2(y))(t)`L �π1(t)⇒�π2(t)
,

• (N)

Γ;∆;Π | ∀y:τ. π(y)`L ∀y:τ. �π(y)
,

• (T)

Γ;∆;Π |�π(t)`L π(t)
,

• (4)

Γ;∆;Π |�π(t)`L ��π(t)
.

Dual properties, of course, hold for the possibility modality.

Proof

• (K) Take

π′(y)=def �((y:τ). π1(y)⇒π2(y))(y)∧�π1(y)

and assume that π′(y) holds. To show that �π2(y) holds, we have to show

that π′(y) implies both π2(y) and [−](π′)(y). On one hand, �π(y) implies

π(y) for any π, so we immediately get π2(y). On the other hand, �π(y) also

implies [−]�π(y), hence π′(y) implies

[−](�((y:τ). π1(y)⇒π2(y)))(y)∧ [−](�π1(y))(y) .

Since necessity modalities commute with conjunctions, we get [−](π′)(y).

Thus π′(y) implies �π2(y). We finish the argument by substituting t for y.

• (N) Assume ∀y : τ. π(y) and define π′ to be (y′ : τ). ∀y : τ. π(y). Since π′(y)

implies both π(y) and [−](π′)(y), it implies �π(y).
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• (T) Next, assuming that �π(y) holds, we immediately get that π(y) holds

as well. We prove the judgement by substituting t for y.

• (4) Assume that �π(y) holds, and define π′(y) to be �π(y). Since �π(y)

implies both �π(y) and [−]�π(y), we have

Γ;∆;Π |π′(y)`L �π(y)∧ [−]�π(y) ,

hence Γ;∆;Π | π′(y) `L ��π(y). We finish the argument by substituting t

for y.

ä

We can also define other global modalities known from computational tree

logic [HR04], for example

AFπ=def µP :(τ). (y:τ). π(y)∨ (〈−〉((y:τ). >)(y)∧ [−](P)(y)) ,

which states that for any run of the computation, π holds at some point, or

EGπ=def νP :(τ). (y:τ). π(y)∧ ([−]((y:τ). ⊥)(y)∨〈−〉(P)(y)) .

which states that a computation has a run for which π continues to hold.

6.4 Computational λ-calculus

We now give a conservative translation of a reasonable restriction of Moggi’s com-

putational λ-calculus [Mog89]. We shall translate its types, terms, propositions,

and judgements into the ones of the logic, and show that translation preserves

provability.

6.4.1 Definition

Moggi’s computational λ-calculus is an equational logic, equipped with a pure-

ness predicate. Given a signature Σt of base types β, the types σ are given by the

following grammar:

σ ::=β | 1 | σ1 ×σ2 | Tσ | σ1 →σ2 .

Then, given a signature Σf of function symbols f :σ1 → σ2, the terms t are given

by:

t ::= x | f(t) | [t] | µ(t) | ? | 〈t1, t2〉 | π1(t) | π2(t) | letxbe t in t′ | λx :σ. t | tt′ .
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Terms are typed as Γ `λc t :σ in a context Γ = x1 :σ1, . . . , xn :σn, according to

the following rules:

Γ`λc x :σ
(x :σ ∈Γ) ,

Γ`λc t :σ1

Γ`λc f(t):σ2

(f :σ1 →σ2 ∈Σf) ,
Γ`λc t :σ

Γ`λc [t]:Tσ
,

Γ`λc t :Tσ

Γ`λc µ(t):σ
,

Γ`λc ?:1
,

Γ`λc t1 :σ1 Γ`λc t2 :σ2

Γ`λc 〈t1, t2〉:σ1 ×σ2

,

Γ`λc t :σ1 ×σ2

Γ`λc π1(t):σ1

,
Γ`λc t :σ1 ×σ2

Γ`λc π2(t):σ2

,
Γ`λc t :σ Γ, x :σ`λc t′ :σ′

Γ`λc letxbe t in t′ :σ′
,

Γ, x :σ`λc t :σ′

Γ`λc λx :σ. t :σ→σ′
,

Γ`λc t :σ→σ′ Γ`λc t′ :σ

Γ`λc tt′ :σ′
.

To differentiate between values and computations, the computational λ-cal-

culus has a pureness predicate t↓σ, which states that a computation t of type σ

causes no effects. The rules for the pureness predicate are

Γ`λc t↓σ Γ, x :σ`λc t′ ↓σ′

Γ`λc t′[t/x]↓σ′
,

Γ`λc x↓σ
,

Γ`λc [t]↓Tτ
,

Γ`λc ?↓1
,

Γ`λc 〈x1, x2〉↓τ1 ×τ2

,
Γ`λc π1(x)↓τ1

,
Γ`λc π2(x)↓τ2

,

Γ`λc λx :σ. t↓σ→ τ
,

while the rules for equality are the ones stating that it is a congruence, and

• (=-subst)
Γ`λc t↓σ Γ, x :σ`λc t1 =σ′ t2

Γ`λc t1[t/x]=σ′ t2[t/x]
,

• (unit)

Γ`λc letxbe t inx =σ t
,

• (ass)

Γ`λc letx2 be (letx1 be t1 in t2) in t =σ letx1 be t1 in(letx2 be t2 in t)
,
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• (let-β)

Γ`λc letxbex′ in t =σ t[x′/x]
,

• (let-f)

Γ`λc f(t)=σ2 letxbe t inf(x)
,

• (T-β)

Γ`λc µ([t])=σ t
,

• (T-η)

Γ`λc [µ(x)]=Tσ x
,

• (1-η)

Γ`λc x =1 ?
,

• (let-〈−〉)

Γ`λc 〈t1, t2〉 =σ1×σ2 letx1 be t1 in letx2 be t2 in〈x1, x2〉
,

• (×-β)

Γ`λc πi(〈x1, x2〉)=σi xi

(1É i É 2) ,

• (×-η)

Γ`λc 〈π1(x),π2(x)〉 =σ1×σ2 x
,

• (let-λ)

Γ`λc tt′ =σ letxbe t in letx′be t′ inxx′
,

• (β)

Γ`λc (λx :σ. t)x =σ t
,

• (η)

Γ`λc λx :σ. x′x =σ x′
(x 6= x′) .

Note that because of the lack of distinction between values and computations,

the evaluation of pairs and applications has an implicit order, determined by

equations (let-〈−〉) and (let-λ), in which the left subterm is evaluated first.
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6.4.2 Translation

Before giving the translation, note that in the computational λ-calculus, prim-

itive functions f :σ→ σ′ are not limited to base types, but accept arguments of

arbitrary types and return computations that can cause effects. We are not go-

ing to give a translation of the calculus over such general signature, but for one

where the signature Σf is restricted to pure functions f :
∏
β→ β and generic ef-

fects genop :
∏
β→ T(

∏
α) (for more general generic effects, one would add sum

types to Moggi’s language). This restriction is in the line with the main premise

of our approach, which is that algebraic operations give an adequate representa-

tion of effects.

Then, we take a base signature, consisting of all the base types β ∈ Σt, and

of function symbols f : (β) → β for each pure function f :
∏
β→ β ∈ Σf. Next, we

take an effect signature, consisting of operations op :β;α for each generic effect

genop :
∏
β→ T(

∏
α) ∈Σf.

For translating types, we first observe that, unlike in our approach, terms

Γ`λc t :σ represent computations that return values of type σ. Hence, we trans-

late types σ to value types σ∗ as

β∗ =β ,

(σ1 ×σ2)∗ =σ∗
1 ×σ∗

2 ,

1∗ = 1 ,

(σ→σ′)∗ =U(σ∗ → Fσ′∗) ,

(Tσ)∗ =UFσ∗ ,

and contexts Γ= x1 :σ1, . . . , xn :σn as

Γ∗ = x1 :σ∗
1 , . . . , xn :σ∗

n .
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Then, we translate terms t to computation terms t∗ as

x∗ = returnx ,

f(t)∗ = t∗ tox. returnf(prji x)i ,

genop(t)∗ = t∗ tox. returnthunk(genop x) ,

[t]∗ = returnthunk t∗ ,

µ(t)∗ = t∗ tox. forcex ,

?∗ = return? ,

〈t1, t2〉∗ = t∗1 tox1. t∗2 tox2. return〈x1, x2〉 ,

π1(t)∗ = t∗ tox. returnfstx ,

π2(t)∗ = t∗ tox. returnsndx ,

(letxbe t in t′)∗ = t∗ tox. t′∗ ,

(λx :σ. t)∗ = returnthunkλx :σ∗. t∗ ,

(tt′)∗ = t∗ tox. t′∗ tox′. (forcex)x′ .

Proposition 6.13 If Γ`λc t :σ then Γ∗ ` t∗ :Fσ∗.

Proof We proceed by a routine induction on the derivation of the typing judge-

ment. ä
With the typing judgements preserved, we show how the logic of the compu-

tational λ-calculus is embraced in our logic.

Lemma 6.14 If there exists a value term v such that Γ`L t∗ =Fσ∗ returnv, then

Γ`L (t′[t/x])∗ =Fσ′∗ t′∗[v/x].

Proof We proceed by a straightforward induction on the structure of t′. ä

Proposition 6.15 If Γ `λc t ↓σ, then there exists a value term Γ∗ ` v :σ∗, such

that Γ`L t∗ =Fσ∗ returnv.

Proof We proceed by an induction on the derivation of Γ`λc t↓σ. If we consider

any axiom of the form Γ `λc t ↓σ, we observe that t∗ is always equivalent to

returnv for some value term v. Next, consider the case when the last applied rule

was
Γ`λc t↓σ Γ, x :σ`λc t′ ↓σ′

Γ`λc t′[t/x]↓σ′
.

By the induction hypothesis, we get value terms v and v′ such that

Γ∗ `L t∗ =Fσ∗ returnv and Γ∗, x :σ∗ `L t′∗ =Fσ′∗ returnv′ .
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Then, by Lemma 6.14 and by value substitution, we get

Γ∗ `L (t′[t/x])∗ =Fσ′∗ returnv′[v/x] .

ä

Theorem 6.16 If Γ`λc t1 =σ t2, then Γ∗ `L t∗1 =Fσ∗ t∗2.

Proof We again proceed by an induction on the derivation of Γ `λc t1 =σ t2.

The case, when the last applied rule was (=-subst) proceeds similarly as the step

case in the proof of Proposition 6.15, while the cases of (let-〈−〉) and (let-λ) are

routine. We consider the other cases in turn.

• For (unit), we have

Γ∗ `L (letxbe t inx)∗ =Fσ∗ t∗ tox. returnx =Fσ∗ t∗

by Proposition 6.1.

• For (ass), we use Proposition 6.2 to show

Γ∗ `L (letx2 be (letx1 be t1 in t2) in t)∗

=σ∗ (t∗1 tox1. t∗2)tox2. t∗

=σ∗ t∗1 tox1. (t∗2 tox2. t∗)

= (letx1 be t1 in(letx2 be t2 in t))∗ .

• For (let-β), we have

Γ∗ `L (letxbex′ in t)∗

=Fσ∗ returnx′ tox. t∗

=Fσ∗ t∗[x′/x]

=Fσ∗ (t[x′/x])∗ .

• (let-f) For a pure function f :
∏
β→β, we have:

Γ∗ `L f(t)∗

=β t∗ tox. returnf(prji x)i

=β t∗ tox. returnx tox′. returnf(prji x′)i (by β-equivalence)

=β (letxbe t inf(x))∗ ,

while the case with a generic effect proceeds similarly.
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• For (T-β), we have

Γ∗ `L (µ([t]))∗

=Fσ∗ returnthunk t∗ tox. forcex

=Fσ∗ forcethunk t∗

=Fσ∗ t∗ .

• For (T-η), we have

Γ∗ `L [µ(x)]∗

=FUFσ∗ returnthunk(returnx tox′. forcex′)

=FUFσ∗ returnthunkforcex

=FUFσ∗ returnx .

• (1-η) From Γ`λc x =1 ?, it follows that Γ`λc x :1 holds, hence x :1 ∈ Γ. This

implies x :1 ∈Γ∗, thus Γ∗ `L x =1 ? and

Γ∗ `L returnx =F1 return? .

• For (×-β), we have

Γ∗ `L π1(〈x1, x2〉)∗

=Fσ∗
1

(returnx1 tox′1. returnx2 tox′2. return〈x′1, x′2〉)tox. fstx

=Fσ∗
1
return〈x1, x2〉tox. returnfstx

=Fσ∗
1
returnfst〈x1, x2〉

=Fσ∗
1
returnx1 ,

for the first projection, while the case of the second projection proceeds

similarly.

• For (×-η), we have

Γ∗ `L 〈π1(x),π2(x)〉∗

=F(σ1×σ2)∗ (returnx tox′1. returnfstx′1)tox1.

(returnx tox′2. returnsndx′2)tox2. return〈x1, x2〉
=F(σ1×σ2)∗ returnfstx tox1. returnsndx tox2. return〈x1, x2〉
=F(σ1×σ2)∗ return〈fstx,sndx〉
=F(σ1×σ2)∗ returnx

=F(σ1×σ2)∗ x∗ .
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• For (β), we have

Γ∗ `L ((λx :σ. t)x′)∗

=σ∗ return(thunk(λx :σ∗t∗. ))tox1. returnx′ tox2. (forcex1)x2

=σ∗ (force(thunk(λx :σ∗. t∗)))x′

=σ∗ (λx :σ∗. t∗)x′

=σ∗ t∗[x′/x]

=σ∗ (t[x′/x])∗ .

• And for (η), we have

Γ∗ `L (λx :σ. x′x)∗

=σ→σ′∗ return(thunk(λx :σ∗. returnx′ tox1. returnx tox2. (forcex1)x2))

=σ→σ′∗ return(thunk(λx :σ∗. (forcex′)x))

=σ→σ′∗ return(thunkforcex′)

=σ→σ′∗ returnx′

=σ→σ′∗ x′∗ .

ä

6.5 Hennessy-Milner logic

6.5.1 Definition

Hennessy-Milner logic [HM85] is an endogenous logic, which examines whether

a given CCS process p satisfies a certain property ϕ. The processes and properties

are given by the following grammar,

p, q, r ::= 0 | a.p | p+ q

ϕ ::=> | ⊥ | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | [a](ϕ) | 〈a〉(ϕ) ,

where a ranges over a set of actions A. In the above grammar, we have omit-

ted renaming, hiding, and parallel composition. As seen in Section 7.4.3, the

first two can be described using handlers, while the third poses problems for our

framework. We have also omitted recursion, which could be done along the lines,

presented in Chapter 9.
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Note that the properties of Hennessy-Milner logic are usually given by truth,

conjunction, possibility modality 〈a〉, and negation, while falsehood, disjunction,

and necessity modality are defined. We take an equivalent approach, which

proves more suitable for our logic, and recursively define negation ¬ϕ by

¬>=⊥ ,

¬⊥=> ,

¬(ϕ1 ∧ϕ2)=¬ϕ1 ∨¬ϕ2 ,

¬(ϕ1 ∨ϕ2)=¬ϕ1 ∧¬ϕ2 ,

¬[a](ϕ)= 〈a〉(¬ϕ) ,

¬〈a〉(ϕ)= [a](¬ϕ) .

In terms of the transition relation p a→ q, given inductively by

a.p a→ p
,

p a→ r

p+ q a→ r
,

q a→ r

p+ q a→ r
,

we define satisfiability p Íϕ by

p Í> always ,

p Í⊥ never ,

p Íϕ1 ∧ϕ2 if p Íϕ1 and p Íϕ2 ,

p Íϕ1 ∨ϕ2 if p Íϕ1 or p Íϕ2 ,

p Í [a](ϕ) if q Íϕ for all q such that p a→ q ,

p Í 〈a〉(ϕ) if q Íϕ for some q such that p a→ q .

6.5.2 Translation

Take the base signature Σbase with a base type of actions act, and appropriate

constant symbols a : act for all the actions a ∈ A. We interpret act by A, and

constant symbols a by the corresponding actions. For the base theory, we take

standard first-order logic without any additional axioms.

Then, take the effect signature Σeff, consisting of operations nil :0, act :act;1,
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and or :2; and the effect theory, given by the following equations:

or(z1,or(z2, z3))= or(or(z1, z2), z3) ,

or(z, z)= z ,

or(z1, z2)= or(z2, z1) ,

or(z,nil)= z .

We then translate each process p to a computation term ` p∗ :F0, given by:

0∗ = nil ,

(a.p)∗ = acta(p∗) ,

(p+ q)∗ = or(p∗, q∗) .

Take any two processes p and q, composed using the three given operations.

Then, they are bisimilar, which we write as p ' q, if and only if they are provably

equal in the equational theory, given by the above four equations [HM85].

We translate each property ϕ into a predicate ` ϕ∗ :prop(F0), given by

>∗ = (y:F0). > ,

⊥∗ = (y:F0). ⊥ ,

(ϕ1 ∧ϕ2)∗ = (y:F0). ϕ∗
1(y)∧ϕ∗

2(y) ,

(ϕ1 ∨ϕ2)∗ = (y:F0). ϕ∗
1(y)∨ϕ∗

2(y) ,

([a](ϕ))∗ = [or]((y1 :F0, y2 :F0). [acta](ϕ∗)(y1)) ,

(〈a〉(ϕ))∗ = 〈or〉((y1 :F0, y2 :F0). 〈acta〉(ϕ∗)(y1)) .

To show the derivability of translated judgements of Hennessy-Milner logic,

we first have to prove a couple of technical lemmas.

Lemma 6.17 If we have p a→ q for processes p and q, there exists a process r

such that

`L p∗ =F0 (a.q+ r)∗ .

Proof We proceed by induction on the derivation of p a→ q. If a.p a→ p, we have

`L a.p∗ =F0 (a.p+0)∗. If p+ q a→ r because p a→ r, we get `L p∗ =F0 (a.r+ s)∗ by

the induction hypothesis, hence `L (p+ q)∗ =F0 (a.r+ (s+ q))∗. In the other case,

we proceed in the same way. ä
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Lemma 6.18 For any process p =∑n
i=1 ai.pi and an action a we have

y1 :F0, y2 :F0 | p∗ =F0 or(acta(y1), y2)`L
∨

ai=a
y1 =F0 p∗

i .

Proof We proceed by a proof by contradiction inside the logic. We are going to

assume that both p∗ =F0 or(acta(y1), y2) and
∧

ai=a¬(y =F0 p∗
i ) hold. Next, using

the free model principle, we are going to construct a (rather contrived) model of

the effect theory. Then, we are going to show that the induced homomorphism

from the initial model maps p∗ and or(acta(y1), y2) into different elements, which

is in contradiction with the assumptions.

To gain some intuition, we describe the model before employing the free

model principle. First, take an action w that does not occur in p. Then, for the

carrier of the model, take the (finite) set of all bisimulation equivalence classes

[q1+·· ·+qm], where each q j is either a subterm of p or of the form w.nil. This set

has evident semi-lattice with a zero structure, while a.[q1+·· ·+qm] is defined to

be [a.(q1 +·· ·+ qm)] if a.(q1 +·· ·+ qm) is a subterm of p and [w.nil] otherwise.

The same construction in the logic goes as follows. Let τ be the computation

type F
∑|UM|

i=1 1, where UM is the carrier set of the above model. We are going to

label closed terms by the appropriate equivalence classes [q1 + ·· ·+ qm]. Using

nested pattern matching constructs and injections, we first define the operations

on
∑|UM|

i=1 1. Using sequencing, we extend those to operations on F
∑|UM|

i=1 1. The

definition of those operations on terms other than returned values is a bit arbi-

trary, but that is not important because Proposition 6.6 allows us to ignore them.

Next, take the unique homomorphism ŷ from F0 to M, which extends the

zero map from 0 to M. Then, the free model principle yields `L ŷp∗ =τ return[p]

and

`L ŷor(acta(y1), y2)=τ tor(tacta( ŷy1), ŷy2) ,

hence

`L return[p]=τ tor(tacta( ŷy1), ŷy2) .

Now, as the two sides are equal, we use the definition of tacta and tor together

with the standard rules for value sums to show that ŷy1 has to be equal to [pi]

for some ai = a. However, this is in contradiction with our assumption. ä

Theorem 6.19 Take a process p and a property ϕ. Then, p Íϕ holds if and only

if `L ϕ
∗(p∗) holds.
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Proof First, assume that p Í ϕ holds and proceed by induction on ϕ. The

cases when ϕ=> and ϕ=⊥ are trivial. If ϕ=ϕ1 ∧ϕ2, we have p Íϕ if and only

if p Í ϕ1 and p Í ϕ2. By induction hypothesis, we get `L ϕ
∗
1(p∗) and `L ϕ

∗
2(p∗),

hence also `L ϕ
∗(p∗). For the disjunctive case, we proceed similarly.

If ϕ = [a](ϕ′), we have p ' ∑n
i=1 ai.pi for some actions ai and processes pi,

such that pi Íϕ′ if a = ai. By Lemma 6.18, we get

y:F0, y′ :F0 | p∗ =F0 or(acta(y), y′)`L
∨

ai=a
y=F0 p∗

i ,

which together with the induction hypothesis implies

y:F0, y′ :F0 | p∗ =F0 or(acta(y), y′)`L ϕ
′∗(y) ,

which is equivalent to `L ϕ
∗(p∗).

And if ϕ= 〈a〉(ϕ′) holds, there exists a process q such that p a→ q and q Í ϕ′.

Then, by Lemma 6.17, there exists a process r such that `L p∗ =F0 a.q + r∗,

while from the induction hypothesis, we get `L ϕ∗(q∗). Together, this implies

`L ϕ
∗(P∗).

Next, assume `L ϕ∗(p∗). From soundness of interpretation, we get that

�ϕ∗(p∗)� = 1. Let us show by induction on ϕ that �ϕ∗(p∗)� = 1 implies p Í ϕ.

The cases with truth, falsehood, conjunction, and disjunction are immediate. In

the case when ϕ=⊥, we use the fact that the effect theory is consistent to show

that �ϕ∗(p∗)� is the empty set.

If ϕ = [a](ϕ′), take an arbitrary q such that p a→ q. By Lemma 6.17, there

exists a process r such that `L p∗ =F0 (a.q+r)∗. From the soundness of interpre-

tation, we get �p∗ =F0 (a.q+ r)∗� = 1, which together with �ϕ∗(p∗)� = 1 implies

�ϕ′∗(q∗)� = 1. By the induction hypothesis, we get q Íϕ′, and so p Íϕ.

Finally, if ϕ= 〈a〉(ϕ′), the soundness of interpretation implies that there exist

two processes q and r such that

�p∗ =F0 or(acta(q∗), r∗)� = 1 ,

�ϕ′∗(q∗)� = 1 ,

hence p ' a.q+ r and q Íϕ′, therefore p Íϕ. ä

6.6 Evaluation logic

Evaluation logic [Pit91] was introduced by Pitts as a way of reasoning about

computations in terms of values they return. We are, however, not going to focus
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on this logic, but on one of Moggi’s suggested refinements [Mog95], because its

semantics is uniform and as such comparable to ours, and because the axioms

for necessity are stronger than the ones of Pitts. Moggi also suggested a more

general variant of evaluation logic [Mog94], however we omit it from our discus-

sion because it has a weaker set of axioms and a semantics that does not apply

to ω-cpos.

6.6.1 Definition

Evaluation logic builds on Moggi’s computational metalanguage [Mog91], but

fixes a single monad T. Given a signature Σt of base types β, the types σ are

given by:

σ ::=β | 1 | σ1 ×σ2 | Tσ | σ1 →σ2 .

Next, given a signature Σf of function symbols f :σ1 → σ2, the terms t are given

by:

t ::= x | f(t) | [t] | ? | 〈t1, t2〉 | π1(t) | π2(t) | letxbe t in t′ | λx :σ. t | tt′ .

Terms are typed as Γ`ev t :σ in a context Γ= x1 :σ1, . . . , xn :σn according to the

same rules as in computational λ-calculus, with the following exception:

Γ`ev t :Tσ Γ, x :σ`ev t′ :Tσ′

Γ`ev letxbe t in t′ :Tσ′

Note that the meaning behind t :σ differs. In the computational λ-calculus, t is a

computation that returns values of type σ, while in the computational metalan-

guage, it is a value of type Tσ.

Then, building on the computational metalanguage, the propositions ϕ of

evaluation logic are given by the following grammar:

ϕ ::= t1 = t2 | > | ϕ1 ∧ϕ2 | ϕ1 ⇒ϕ2 | ∀x :σ. ϕ | [letxbe t](ϕ) ,

where in the last two propositions, x is bound in ϕ.

Informally, the (necessity) evaluation modality [letxbe t](ϕ) states that every

value computed by the computation term t satisfies ϕ. For example, if the effect

at hand is nondeterminism, then [letxbe t](ϕ) holds if and only if all values com-

puted by t satisfy ϕ; if it is exceptions, then [letxbe t](ϕ) holds if and only if t

satisfies ϕ when it does not raise an exception.



98 Chapter 6. Development and applications of the logic

In addition to the necessity modality, Pitts’s evaluation logic [Pit91] gives

a possibility modality 〈letxbe t〉(ϕ), which states that t can return a value that

satisfies ϕ. We follow Moggi and omit it from our discussion, as we can define it

as

〈letxbe t〉(ϕ)=def ¬[letxbe t](¬ϕ)

and translate it accordingly. For the same reasons, we omit the discussion of

falsehood, disjunction, and existential quantifier.

Proposition are typed as Γ`ev ϕ:prop in the standard way, with the modality

typed by:
Γ`ev t :Tσ Γ, x :σ`ev ϕ:prop

Γ`ev [letxbe t](ϕ):prop
.

Judgements of evaluation logic are of the form Γ |Ψ ` ϕ, where Ψ is a set

of hypotheses Γ ` ϕi : prop and Γ ` ϕ : prop is the conclusion. If a judgement

Γ | Ψ ` ϕ is derivable in evaluation logic, we write Γ | Ψ `ev ϕ. We write an

equivalence Γ |Ψ a`ev ϕ when both Γ |Ψ `ev ϕ holds and Γ | ϕ `ev ϕi holds for

any ϕi ∈Ψ.

Omitting the standard reasoning rules of first-order logic (as presented in

Section 2.2) together with weakening, the reasoning rules for modalities are:

• (�-`)
Γ, x :σ |Ψ,ϕ`ev ϕ

′

Γ |Ψ, [letxbe t](ϕ)`ev [letxbe t](ϕ′)
,

• (�-η)

Γ, x :σ |ϕa`ev [letxbe [x]](ϕ)
,

• (�-let)

Γ | [letx1 be t1][letx2 be t2](ϕ)a`ev [letx2 be (letx1 be t1 in t2)](ϕ)
,

• (�->)

Γ | >`ev [letxbe t](>)
,

• (�-∧)

Γ | [letxbe t](ϕ1), [letxbe t](ϕ2)a`ev [letxbe t](ϕ1 ∧ϕ2)
,
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• (�-⇒)

Γ | [letxbe t](ϕ1 ⇒ϕ2)a`ev ϕ1 ⇒ [letxbe t](ϕ2)
,

• (�-∀)

Γ | [letxbe t](∀x′ :σ′. ϕ)a`ev ∀x′ :σ′. [letxbe t](ϕ)
,

• (�-=)

Γ | [letxbe t](t1 = t2)`ev (letxbe t in t1)= (letxbe t in t2)
.

The above rules are slightly different than the ones given by Moggi. In particular,

we omit the rules

• (�-µ)

Γ | [letx1 be t1][letx2 bex1](ϕ)a`ev [letx2 be (letx1 be t1 inx1)](ϕ)
,

• (�-T)

Γ | [letx1 be t1]ϕ[t2/x2]a`ev [letx2 be (letx1 be t1 in [t2])](ϕ)
,

• (�-st)

Γ | [letxbe t]ϕ[〈x1, x2〉/x′]a`ev [letx′be(letxbe t in[〈x1, x2〉])](ϕ)
,

as they are derivable. First, (�-µ) is an instance of (�-let) if we set t2 to be x1.

Then, if we substitute t2 for x in (�-η) and apply (�-`) in both directions, we get

Γ | [letx1 be t1]ϕ[t2/x2]a`ev [letx1 be t1][letx2 be [t2]]ϕ
,

which together with (�-µ) implies (�-T). Finally, (�-st) is an instance of (�-T)

if we set t2 to be 〈x1, x2〉.
Note that Moggi gives a variant of some rules, marked by an asterisk, where

a one-way judgement is replaced by an equivalence. Wherever possible, we gave

a variant with an equivalence, therefore we omit the asterisks from the labels.
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6.6.2 Translation

As in the translation of the computational λ-calculus, we limit our translation

to ones where signatures are restricted to pure functions f :
∏
β→ β and generic

effects genop :
∏
β→ T(

∏
α). Furthermore, since function types of our logic have

computation types for codomains, we restrict the function types in the metalan-

guage to ones of the form σ→ Tσ′. An alternative would be to add a value type

of functions σ→σ′ with value type codomains to our logic.

Then, we take a base signature, consisting of all the base types β ∈ Σt, and

of function symbols f : (β) → β for each pure function f :
∏
β→ β ∈ Σf. Next, we

take an effect signature, consisting of operations op :β;α for each generic effect

genop :
∏
β→ T(

∏
α) ∈Σf, and the empty effect theory

We translate types of evaluation logic to value types as:

β∗ =β ,

(σ1 ×σ2)∗ =σ∗
1 ×σ∗

2 ,

1∗ = 1 ,

(σ→ Tσ′)∗ =U(σ∗ → Fσ′∗) ,

(Tσ)∗ =UFσ∗ ,

terms to value terms as:

x∗ = x ,

f(t)∗ = f(t∗) ,

genop(t)∗ = thunk(genop(t∗)) ,

[t]∗ = thunk(return t∗) ,

?∗ =? ,

〈t1, t2〉∗ = 〈t∗1, t∗2〉 ,

π1(t)∗ = fst t∗ ,

π2(t)∗ = snd t∗ ,

(letxbe t in t′)∗ = thunk((force t∗)tox. (force t′∗)) ,

(λx :σ. t)∗ = thunkλx :σ∗. t∗ ,

(tt′)∗ = force(t∗)t′∗ ,
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and propositions as:

(t1 = t2)∗ = (t∗1 = t∗2) ,

>∗ => ,

(ϕ1 ∧ϕ2)∗ =ϕ∗
1 ∧ϕ∗

2 ,

(ϕ1 ⇒ϕ2)∗ =ϕ∗
1 ⇒ϕ∗

2 ,

(∀x :σ. ϕ)∗ =∀x :σ∗. ϕ∗ ,

([letxbe t](ϕ))∗ =�([↓](x :σ∗). ϕ∗)(force t∗) .

To prove the soundness of the translation, we are going to use the fact that

the satisfiability of a necessity modality propagates to all subcomputations and

returned values.

Lemma 6.20 The pureness balance proposition

Γ;∆;Π |�([↓]π)(returnv)`L π(v)

and the operation balance proposition

Γ;∆;Π |�([↓]π)(opv(xi. ti)i)`L
∧
i
∀xi :αi. �([↓]π)(ti)

both hold.

Proof The proof is immediate from the definition of the modalities. ä

Proposition 6.21 The translations of (�-`), (�->), (�-∧), (�-⇒), (�-∀), and

(�-=) are derivable in our logic.

Proof

• To show that the translation of (�-`) is derivable, we observe that

∀x :σ. π(x)⇒π′(x)

implies

∀y:Fσ. ([↓]π)(y)⇒ ([↓]π′)(y) .

Together with Proposition 6.12, this implies

∀y:Fσ. �([↓]π)(y)⇒�([↓]π′)(y)

and so the translation of (�-`).
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• The proofs of the cases (�->), (�-∧), (�-⇒), and (�-∀) are all alike, so let

us give only the one for (�-∧). Set πi =def (x :σ∗). ϕ∗
i for i = 1,2. Then, (�-∧)

gets translated as

Γ∗ |�([↓]π1)(force t∗),�([↓]π2)(force t∗)` �([↓](x :σ∗). (π1(x)∧π2(x)))(force t∗)

and its converse. First, assume that �([↓]π1)(y) and �([↓]π2)(y) hold. To

show the conclusion, we use the introduction rule for the predicate fixed

point defining �. Hence, we need to prove that

[↓]((x :σ∗). π1(x)∧π2(x))(y)

and

[−]((y:Fσ∗). �([↓]π1)(y)∧�([↓]π2)(y))(y)

hold. As �([↓]πi)(y) entails ([↓]πi)(y), we immediately get the first con-

dition. For the second condition, �([↓]πi)(y) entails [−](�([↓]πi))(y). It is

straightforward to check that the modality [−] commutes with the conjunc-

tion, hence

[−](�([↓]π1))(y)∧ [−](�([↓]π2))(y)

entails

[−]((y:Fσ∗). �([↓]π1)(y)∧�([↓]π2)(y))(y) .

The other direction follows from (�-`) and the elimination rules for con-

junction.

• (�-=) gets translated as

Γ∗ |�([↓](x :σ∗). force t∗1 = force t∗2)(force t∗)

` t∗ tox. force t∗1 = force t∗ tox. force t∗2 .

To show derivability, take

π=def (y:Fσ). �([↓](x :σ∗). force t∗1 = force t∗2)(y)

⇒ ytox. force t∗1 = ytox. force t∗2

and proceed by the principle of computational induction on y.
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– For the base case, we have

�([↓](x :σ∗). force t∗1 = force t∗2)(returnx)

⇒ force t∗1 = force t∗2

(by the pureness balance proposition)

⇒ returnx tox. force t∗1 = returnx tox. force t∗2

(by β-reduction for sequencing) .

– For the step case, take op :β;α1, . . . ,αn ∈ Σeff and assume that π(yixi)

holds for all yi :(αi)→ Fσ and xi :αi. Then, we have

�([↓](x :σ∗). force t∗1 = force t∗2)(opx(xi. yixi)i)

⇒∧
i
∀xi :αi. (�([↓](x :σ∗). force t∗1 = force t∗2))(yixi)

(by the operation balance proposition)

⇒∧
i
∀xi :αi. yixi tox. force t∗1 = yixi tox. force t∗2

(by the induction hypothesis)

⇒ opx(xi. yixi tox. force t∗1)i = opx(xi. yixi tox. force t∗2)i

(by congruence)

⇒ opx(xi. yixi)i tox. force t∗1 = opx(xi. yixi)i tox. force t∗2

(by algebraicity of operations) .

Hence, π(y) holds for all y :Fσ. We finish the proof by substituting force t∗

for y.

ä

Unfortunately, the translations of axioms (�-η) and (�-let) are not derivable

in our logic.

Example 6.22 Take the base theory Tbase of natural numbers, equipped with a

relation symbol iszero : (nat) and the expected axioms, and the effect theory Teff

for state. Then, we have

`L return0

=Fint lookup`(d. return0)

=Fint lookup`(d. lookup`(d
′. if d = d′ thenreturn0elsereturn1)) .
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Now, although we have `Tbase iszero(0) holds, the proposition

([letxbereturn0](iszero(x)))∗

fails because `L iszero(1) fails, while the translation of (�-η) states that iszero(x)

holds for all possible returned values x.

Hence the translation of the axiom (�-η) is even refutable in our logic for

some base and effect theories. The reason for the failure of translation lies in the

fact that we could contaminate a term with values that would never be returned

in its evaluation. For this reason, we limit ourselves to a well-behaved subset of

equational theories where such contamination is not possible.

Remark 6.23 An alternative is to define the translation of the evaluation modal-

ity as

µX :(Fσ). (y:Fσ). [↓](π)(y)∨∨
op:β;α1,...,αn∈Σeff

〈op〉((x :β, y1 :α1 → τ, . . . , yn :αn → τ).
n∧

i=1
∀xi :αi. X (yixi))(y) .

Then, the translation of [letxbe t](ϕ) states that there exists a computation, equiv-

alent to t, whose leaves all satisfy ϕ. This does give the correct semantics for

all effects mentioned above. Unfortunately, it does not help us in the embrace

of evaluation logic, as most of the translated axioms end in a form where no

progress can be made by applying rules of the logic.

6.6.3 Balanced theories

Definition 6.24 An equation Z ` e1 = e2 of a (countable) single-sorted equa-

tional theory T is balanced, if a variable z ∈ Z occurs in e1 if and only if it occurs

in e2. A theory T is balanced if all the equations Z `T e1 = e2 are balanced.

For a given model of the base theory Tbase, an effect theory Teff is balanced

if the induced countable equational theory, constructed as in Section 4.1, is bal-

anced.

The theories for exceptions, nondeterminism, interactive input and output

and time are all balanced. Furthermore, if two theories are balanced, so is their

sum and tensor product [HPP06]. Also, note that the reasoning rules of equa-

tional theories preserve balanced equations, hence a theory is balanced if all its

axioms are balanced.
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Remark 6.25 The restriction to balanced theories is related to the restriction

to simple monads in HASCASL [SM04] and global evaluation logic [GSM06]. In

particular, if an equational theory is balanced, the induced monad is simple, but

note that the state monad is simple even though the effect theory for state is not

balanced.

Also, monads induced by balanced theories correspond exactly to collection

monads [Man98], which are used to model various collection classes such as lists,

sets, trees, or bags.

Lemma 6.26 If an equational theory T is balanced, it is equationally consistent.

Proof If the equational theory T is balanced, we cannot have x1, x2 `T x1 = x2

as both x1 and x2 occur on only one side of the equation. ä
Recall that for a given set X , the set TX is constructed as the set of equiv-

alence classes [` e] of closed terms ` e, built using operations from Σeff and

generators from X , modulo the equality of the infinitary equational theory T,

generated by the effect theory Teff.

For such a term e, we can define its support supp e ⊆ X by

supp a = {a} (a ∈ X )

supp op(a; f1, . . . , fn)=⋃
i

supp f i ,

where for a function f : �α� → TX , we define supp f =def
⋃

a∈�α� supp f a.

If the effect theory is balanced, we have supp e = supp e′ whenever `T e = e′.

Thus, for δ ∈ TX , we can define supp δ to be supp e for any e such that �e� = δ.

By the construction of TX , such e always exists.

Lemma 6.27 Take a set X and A ⊆ X . Then, for any [e] ∈ TX , we have

supp [e]⊆ A if and only if [e] ∈ T A .

Proof We proceed by induction on the structure of terms of the infinitary equa-

tional theory.

• For the base step, we have supp [a] = {a}, hence supp [a] ⊆ A if and only if

a ∈ A, which is equivalent to [a] ∈ T A as the theory is consistent.

• For the induction step, assume that supp [op(a; f1, . . . , fn)] ⊆ A. Since we

have supp [op(a; f1, . . . , fn)]=⋃
i supp [ f i], we have supp [ f i]⊆ A for all i. By
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the induction hypothesis, we get [ f iai] ∈ T A for all 1 É i É n and ai ∈ �αi�,
hence [op(a; f1, . . . , fn)] ∈ T A. On the other hand, if we have

[op(a; f1, . . . , fn)] ∈ T A

then by the construction of op(a; f1, . . . , fn), it follows that

supp [op(a; f1, . . . , fn)]⊆ A .

ä

Lemma 6.28 Assume that the effect theory Teff is balanced, and take a predicate

Γ;∆;Π` π:prop(σ) .

Then for any 〈γ,δ,U〉 ∈ �Γ� × �∆� × �Π�, the set ��([↓]π)�(γ,δ,U) is equal to the

free model T(�π�(γ,δ,U)) of the equational theory, generated by Teff, over the set

of generators �π�(γ,δ,U).

Proof To simplify the proof, we write �−� instead of �−�(γ,δ,U). Since

�([↓]π)=def νP :(Fσ). (y:Fσ). ([↓]π)(y)∧ [−](P)(y) ,

the set ��([↓]π)� is defined to be the largest set U ⊆ T�σ� such that:

1. if η�σ�(a) ∈U for some a ∈ �σ�, then a ∈ �π�;

2. if for any op :β;α1, . . . ,αn, any a ∈ �β�, and any f i : �αi� → T�σ�, we have

opFσ(a; f1, . . . , fn) ∈U , then f i(ai) ∈U for any 1É i É n and all ai ∈ �αi�.

We first show that T�π� satisfies the two conditions. Since η�σ�(a) = [a], we

have η�σ�(a) ∈ T�π�. From Lemma 6.27, it follows that supp η�σ�(a) = {a} ⊆ �π�,
hence a ∈ �π�.

Then, assuming opFσ(a; f1, . . . , fn) ∈ T�π�, we get

supp opFσ(a; f1, . . . , fn)=⋃
i

supp f i ⊆ �π� ,

which implies supp f i ⊆ �π�, hence f iai ∈ T�π� for all ai ∈ �αi� and 1É i É n.

On the other hand, take a set U ⊆ T�σ� that satisfies the above two con-

ditions. Let us show by induction on e that [e] ∈ U implies [e] ∈ T�π� for any

[e] ∈ T�σ�.



6.6. Evaluation logic 107

First, if [a] = η�σ�(a) ∈ U holds for some a ∈ �σ�, the first condition implies

a ∈ �π�, which further implies [a] ∈ T�π�.
Next, take [op(a; f1, . . . , fn)] ∈ U . The second condition implies [ f i(ai)] ∈ U

for any 1 É i É n and all ai ∈ �αi�. By the induction hypothesis, we get that

[ f i(ai)] ∈ T�π� for any 1É i É n and all ai ∈ �αi�. And as T�π� is a free model, we

get

opFσ(a; [ f1], . . . , [ fn])= [op(a; f1, . . . , fn)] ∈ T�π� .

Thus, T�π� is the greatest set that satisfies the above two conditions and is as

such equivalent to ��([↓]π)�. ä

Corollary 6.29 If the effect theory Teff is balanced, the converse

Γ;∆;Π |π(v)`L �([↓]π)(returnv)

of the pureness balance proposition, and the converse

Γ;∆;Π |∧
i
∀xi :αi. �([↓]π)(ti)`L �([↓]π)(opv(xi. ti)i)

of the operation balance proposition, both defined in Lemma 6.20, are both sound.

Remark 6.30 Note that the converse of the pureness balance proposition entails

the consistency proposition

∀x1, x2 :σ. returnx1 = returnx2 ⇒ x1 = x2 ,

given in Proposition 5.5, if one takes v =def x2 and π=def (x1 :σ). x1 =σ x2.

Since the balance propositions are sound for balanced effect theories, we may

add them to our logic to obtain a translation of evaluation logic.

Theorem 6.31 Assume the converses of pureness and operation balance propo-

sitions. Then, if Γ |Ψ`ev ϕ holds, so does Γ∗ |Ψ∗ `L ϕ
∗.

Proof We proceed by induction on the derivation of Γ |Ψ`ev ϕ.

• The proofs of the cases (�-`), (�->), (�-∧), (�-⇒), (�-∀), (�-=) were al-

ready treated in Proposition 6.21.

• (�-η) gets translated as

Γ∗ |ϕ∗(x)` �([↓]ϕ∗)(returnx)

and its converse. The second direction follows from the pureness balance

proposition, while the first direction follows from its converse.



108 Chapter 6. Development and applications of the logic

• (�-let) gets translated as

Γ∗ |�([↓](x1 :σ1). �([↓]ϕ∗)(force t∗2))(force t∗1)

` �([↓]ϕ∗)(force t∗1 tox1. force t∗2)

and its converse. To show the equivalence, take

π=def (y:Fσ). �([↓](x1 :σ1). �([↓]ϕ∗)(force t∗2))(y)

⇔�([↓]ϕ∗)(ytox1. force t∗2)

and proceed by the principle of computational induction on y.

– For the base case, we have

�([↓](x1 :σ1). �([↓]ϕ∗)(force t∗2))(returnx)

⇔�([↓]ϕ∗)(force t∗2)[x/x1]

(by the balance proposition and its converse)

⇔�([↓]ϕ∗(force t∗2[x/x1]))

(since x1 is not free in ϕ)

⇔�([↓]ϕ∗)(returnx tox1. force t∗2)

(by β-reduction for sequencing) .

– For the step case, take op :β;α1, . . . ,αn ∈ Σeff and assume that π(yixi)

holds for all yi :(αi)→ Fσ and xi :αi. Then, we have

�([↓](x1 :σ1). �([↓]ϕ∗)(force t∗2))(opx(xi. yixi)i)

⇔∧
i
∀xi :αi. �([↓](x1 :σ1). �([↓]ϕ∗)(force t∗2))(yixi)

(by the balance proposition and its converse)

⇔∧
i
∀xi :αi. �([↓]ϕ∗)(yixi tox1. force t∗2)

(by the induction hypothesis)

⇔�([↓]ϕ∗)(opx(xi. yixi tox1. force t∗2)i)

(by the balance proposition and its converse)

⇔�([↓]ϕ∗)(opx(xi. yixi)i tox1. force t∗2)

(by algebraicity of operations) .

Hence, π(y) holds for all y :Fσ. We finish the proof by substituting force t∗

for y.

ä



Chapter 7

Handlers of algebraic effects

We now turn to the other aim of the thesis: giving an algebraic treatment of

exception handlers. We shall first relate each exception handler to a model of

the effect theory for exceptions, and describe handling in terms of induced ho-

momorphisms from the free model. Then, we shall generalise this treatment to

other algebraic effects, note the difficulties that arise with the generalisation,

and suggest a possible solution.

7.1 Exception handlers

We start our study with exception handlers, because they are an established con-

cept [BK01, Lev06b] and also because exceptions provide the simplest example

of algebraic effects. Note that in this section, we do not present a calculus of

handlers, but work informally in the context of the a-calculus in order to focus

on the exposition of ideas.

Recall that we represent a finite set of exceptions E by a finite effect signature

Σeff, consisting of a nullary operation symbol raiseexc :0 for each exc ∈ E, and by

the trivial effect theory Teff. Then, a computation term Γ ` t : Fσ is interpreted

by a map �t� : �Γ� → �σ� + E. In particular, we have �returnv� = in1 ◦ �v� and

�raiseexc� = in2 ◦kexc, where kexc : �Γ� → E is the constant map that maps each

a ∈ �Γ� to exc ∈ E.

Let us extend computation terms with an exception handling construct

try twith{exci = ti}i ,

where t is the handled term and {exci = ti}i is the handler. The handling con-

109
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struct evaluates as t, unless its evaluation raises an exception exci for some i, in

which case, it evaluates as ti.

The behaviour of the handling construct is thus described by the following:

Γ` try returnvwith{exci = ti}i =Fσ returnv ,

Γ` try raiseexc j with{exci = ti}i =Fσ t j ,

Γ` try raiseexcwith{exci = ti}i =Fσ raiseexc (exc ∉ {exci}i) .

Semantically, for any γ ∈ �Γ�, the family of computation terms {ti}i provides

a model Mγ of the effect theory Teff on the set �σ� +E. For all i, the operation

symbol raiseexci is interpreted by �ti�(γ), while other operation symbols raiseexc

are interpreted as in the free model.

Then, the above equations respectively state that the handling construct ex-

tends the inclusion of values, and that it acts homomorphically on exceptions.

Hence, the interpretation of the handling construct is given by

�Γ` try twith{exci = ti}i� =def γ 7→ (Uθγ)(�t�(γ)) ,

where θγ is the unique induced homomorphism F�σ� → Mγ, for which the follow-

ing diagram commutes.

�σ�

UF�σ�

η�σ�

?

Uθγ
- UMγ =UF�σ�

η�σ�

-

Benton and Kennedy [BK01] generalised the handling construct to one of the

form (for reasons discussed in Section 7.3, we use a different syntax)

try twith{exci = ti}i asx in t′ ,

typed as
Γ` t :Fσ Γ` ti :τ (for all i) Γ, x :σ` t′ :τ

Γ` try twith{exci = ti}i asx in t′ :τ
.

Here, an exception exci may be handled by a computation term ti of any given

type τ, while returned values are “handled” with the computation term t′. As

remarked by the authors, this handling construct allows a more concise pro-

gramming style, program optimisations, and a stack-free small-step operational

semantics [BK01].
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The behaviour of the extended handling construct is described by:

Γ` try returnvwith{exci = ti}i asx in t′ =τ t′[v/x] ,

Γ` try raiseexc j with{exci = ti}i asx in t′ =τ t j ,

Γ` try raiseexcwith{exci = ti}i asx in t′ =τ raiseexc (exc ∉ {exci}i) .

Semantically, for any γ ∈ �Γ�, the family of computation terms {exci = ti}i

provides a model Mγ of the effect theory as before, except that its carrier is now

U�τ�. Then, the above two equations again state that the handling construct acts

homomorphically on exceptions, but now extends the map �t′�(γ,−) : �σ� → Mγ.

Hence, the interpretation of the handling construct is given by

�try twith{exci = ti}i asx in t′� =def γ 7→ (Uθγ)(�t�(γ)) ,

where θγ is the unique induced homomorphism F�σ� → Mγ, for which the follow-

ing diagram commutes.

�σ�

UF�σ�

η�σ�

?

Uθγ
- UMγ =U�τ�

�t ′�(γ,−)
-

The universal property of the free model F�σ� states that each homomor-

phism F�σ� → M is induced by a map �σ� →UM, hence Benton and Kennedy’s

approach to the handling construct is the most general one possible from the

algebraic point of view.

We can now see how to give handlers of other algebraic effects. An excep-

tion handler on a type τ is given by a computation term ti :τ for each exception

exci ∈ E we wish to handle. Likewise, a generalised handler is given by a compu-

tation term y1 :τ, . . . , yn :τ` top :τ for each operation symbol op:n ∈Σeff we wish to

handle (we are still considering the standard single-sorted equational theory at

this point). As the effect signature is finite, the handler can contain all the oper-

ation symbols. For those that we do not wish to handle, we set top = op(y1, . . . , yn).

The behaviour of the handling construct is determined by two equations:

Γ` try returnvwith {op(yi)i = top}op:n∈Σeff =Fσ returnv ,

Γ` tryop(t j) j with {op(yi)i = top}op:n∈Σeff

=Fσ top[try t j with{op(yi)i = top}op:n∈Σeff /yj] j ,
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and we could analogously describe the extended handling construct of Benton

and Kennedy.

However, in order to interpret handlers with models as before, the replace-

ment maps on U�τ� have to satisfy the equations of the effect theory. We say that

a handler has to be correct, a notion we shall define more precisely after we give

the calculus.

Exception handlers are usually described and used within the same language:

for each exception, we give a replacement computation term, which can contain

further exception handlers. This is possible because the effect theory for excep-

tions is trivial, hence every exception handler is correct. The same holds for time,

or interactive input and output. But for arbitrary algebraic effects, this causes a

complex interdependence between the typing relation and the equational logic,

which guarantees that all well-typed handlers have a sound interpretation.

Even worse, determining whether a given assignment of computation terms

to operation symbols yields a model of the effect theory is in general undecid-

able [PP09]. The proof of this fact is long, technical, and not too relevant to the

development in the rest of the thesis, hence we shall not pursue it.

Instead of equipping the calculus with a mechanism that ensures the correct-

ness of handlers, we are going to provide two languages: one to describe handlers,

and another one to use them. In this way the selection of correct handlers is del-

egated to the meta-level. This approach is similar to the one taken in HASKELL,

where a programmer is given access to the effects only through the use of built-in

monads, which had their monadic laws checked by the language designers.

The two languages will be very similar and will both build on the term lan-

guage of the logic. To describe handlers, we are going to extend the term lan-

guage with type variables; this will allow handlers to be polymorphic. To use

handlers, we are going to extend the term language with the handling construct.

When referring to the first language, we are going to use the “handler” quali-

fier, for example handler value types, while for the second language, we shall use

the “program ” qualifier. Furthermore, we shall use the same meta-variables for

their types and terms, with any ambiguities resolved from the context.
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7.2 The handler language

Definition 7.1 Take a countably infinite set of type variables X . The sets of

handler value types σ, handler value terms v, and handler computation terms t

are given by the same grammar as their counterparts in term language of the

logic, given in Section 4.2, while handler computation types τ are given by the

grammar for computation types, extended by

τ ::= X | · · · .

Contexts and typing judgements are given exactly as in the term language of the

logic. Note that for any assignment of computation types to type variables and

for any handler type or term, we get a counterpart in the term language. For

example, given a handler computation term t, we get a computation term t[τ/X ]

by substituting each type variable X i by a computation type τi.

A handler is given by a handling term for each operation, which may further

depend on additional parameters, passed to the handler by the handling con-

struct. This can also be used to pass additional handling constructs to a handler.

Definition 7.2 The set of handlers h is given by the following grammar:

h ::= (xp :σp; yp :τp). {opx(y)= top}op∈Σeff .

The handlers are typed as ` h :(σp;τp)→ τhandler by the following rule:

xp :σp, x :β; yp :τp, (yi :αi → τ)i ` top :τ (op:β;α1, . . . ,αn ∈Σeff)

` (xp :σp; yp :τp). {opx(y)= top}op∈Σeff :(σp;τp)→ τhandler
.

When opx(y) = top is omitted, we assume that top = opx(xi. yi(xi))i, so that op is

not handled, so to speak. We omit the semicolon in handlers when either σp or

τp is empty, or write h :τhandler when both are empty.

A handler may be polymorphic because type variables may occur in σp, τp or

τ. We say that a handler ` h : (σp;τp)→ τhandler is uniform when τ = X , and

parametrically uniform when τ=σ→ X for some type variable X .

For each model of the logic (a model of the base theory that maps arity types

to countable sets), and each assignment ρ of models ρ(X ) to type variables X ,

handler value types σ are interpreted by sets �σ�ρ, given by �Uτ�ρ =U�τ�ρ and

in the obvious way for the other handler value types, while handler computation
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types τ are interpreted by models �τ�ρ, given by

�X�ρ = ρ(X ) �Fσ�ρ = F�σ�ρ �1�ρ = 1

�τ1 ×τ2�ρ = �τ1�ρ×�τ2�ρ �σ→ τ�ρ = �τ��σ�ρρ .

Then, contexts and terms are interpreted as in the term language of the logic,

while a handler h :(σp,τp)→ τhandler is interpreted by a parameterised family

�h�ρ(γp,δp) of interpretations of Σeff, where γp ∈ �σ�ρ and δp ∈U�τ�ρ. Each such

interpretation gives a model of the effect signature Σeff with a carrier U�τ�ρ, and

operation symbols op:β;α1, . . . ,αn interpreted with maps

oph(γ,δ)=def �top�(γp,γ,δp,δ) .

We say that h is correct (with respect to a given model of Teff) if for all assign-

ments ρ, and for all γp ∈ �σ�ρ and δp ∈ U�τ�ρ, the interpretation �h�ρ(γp,δp)

defines a model of the effect theory Teff on U�τ�ρ.

7.3 The program language

Now, assume a handler signature Σhand of handler symbols

H :(σp;τp)→ τhandler ,

each of which will be interpreted by a correct handler. The sets of program value

types σ, program computation types τ, and program value terms v are given by

the same grammar as their counterparts in term language of the logic, given in

Section 4.2, while handler computation terms t are given by the grammar for

computation types, extended by the handling construct

t ::= try twithH(vp; tp)asx :σ in t′ | · · · .

Similar as in sequencing, the handled term t does not have a unique type, hence

the variable x has to have an explicit type (although we often omit it) in order to

ensure the uniqueness of the typing derivation.

When the full handling construct is not necessary, we write try twithH(vp; tp)

instead of try twithH(vp; tp)asx :σ inreturnx.

Note that the syntax of the handling construct differs somewhat from the one

introduced by Benton and Kennedy [BK01], which is of the form

try x ⇐ t in t′unless {exci ⇒ ti}i .
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As noted by the authors themselves, this syntax is confusing when used in pro-

gramming: it does not make it obvious that t is handled whereas t′ is not. This is

particularly confusing when t′ is large, which is the usual case in programming.

An alternative they propose is

try x ⇐ tunless {exci ⇒ ti}i in t′ ,

but then it is not obvious that x is bound in t′, but not in the handler. The syntax

of our construct addresses those issues and clarifies the order of evaluation: after

t is handled with H, the results are bound to x and used in t′.

Given an assignment of program computation types τi to type variables X i,

the handling construct for a handler symbol H : (σp;τp)→ τhandler ∈ Σhand is

typed by

Γ;∆` t :Fσ

Γ;∆` vp :σp[τi/X i]i Γ;∆` tp :τp[τi/X i]i Γ, x :σ; ∆` t′ :τ[τi/X i]i

Γ;∆` try twithH(vp; tp)asx :σ in t′ :τ[τi/X i]i

.

Note that since the types are given inductively, we can show by induction on the

structure of τ that τ[τi/X i]i = τ[τ′i/X i]i implies τi = τ′i for all variables X i that

occur in τ.

To interpret the handling construct, we assume given a handler definition H,

mapping each handler symbol H : (σp;τp) → τ handler ∈ Σhand to a correct han-

dler ` H(H) : (σp;τp) → τ handler. Then, the handling construct is interpreted

as follows.

Take γ ∈ �Γ� and δ ∈ �∆� and let ρ be an assignment that maps X i to �τi�.
Since each handler H(H) is correct, the Σeff interpretation

�H(H)�ρ(�vp�ρ(γ,δ),�tp�ρ(γ,δ))

gives a model M of the effect theory Teff with carrier U�τ�ρ. By the universality of

the free model F�σ�, there is a unique homomorphism θγ,δ : F�σ� → M extending

�t′�(γ,−,δ), in the sense that the following diagram commutes:

�σ�

UF�σ�

η�σ�

? Uθγ,δ- UM

�t ′�(γ,−,δ)
-
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The handling construct Γ;∆ ` try twithH(vp; tp)asx :σ in t′ :τ[τ/X ] is then in-

terpreted by the map

〈γ,δ〉 7→ θγ,δ(�t�(γ,δ)) : �Γ� ×�∆� →U�τ[τ/X ]� ,

where �τ�ρ and �τ[τ/X ]� are equal by the definition of ρ.

Note that in a single term, multiple instances of a single handler symbol can

be used with different assignments of computation types to type variables. To do

so, we only have to start applying the substitutions to the innermost handling

constructs.

7.4 Examples

7.4.1 Exceptions

The standard uniform exception handler

Hexc :(exc→ X )→ X handler

is given by

(y:exc→ X ). {raisee = ye}:(exc→ X )→ X handler .

Since the effect theory for exceptions is trivial, it is correct.

Benton and Kennedy’s construct try x ⇐ t in t′unless {e1 ⇒ t1 | · · · | en ⇒ tn} can

be written as try twithHexc(texc)asx :σ in t′ for suitable σ and texc :exc → τ. Our

construct is actually a bit more general because E may be infinite and because

we are in a call-by-push-value framework rather than a call-by-value one.

7.4.2 Stream redirection

Shell processes in UNIX-like operating systems communicate with the user using

input and output streams, usually connected to a keyboard and a terminal win-

dow. Such streams can be redirected to other processes so that simple commands

can be combined into more powerful ones.

One case is the redirection proc > outfile, which takes the output stream of

a process proc, and writes it to to a file outfile for later, whereas proc > /dev/null

writes it to the null device, which acts as a black hole. This effectively discards



7.4. Examples 117

the standard output stream, for example when the user does not want to fill his

terminal window with unnecessary output.

Another case is the pipe proc1|proc2, where the output of proc1 is fed to the

input of proc2. This is crucial in implementing the UNIX philosophy of “writing

programs that do one thing and do it well,” because it allows the chaining of

multiple simple processes into a more complex one. For example

latex thesis.tex|grep full

runs LaTeX on the file thesis.tex, and passes its output messages to the command

grep, which selects only the lines that contain full. Hence, the user is not pre-

sented with the whole LaTeX output, but only with the warnings about overfull

and underfull boxes.

A simpler example of a pipe is yes|proc. The command yes outputs an infinite

stream made of a predetermined character (the default one being y). Such pipe

then gives a way of routinely confirming a series of actions, for example deleting

a large number of files. This is not always the best way, since commands usually

provide a safer means of doing the same thing, but is often useful when they do

not.

If we represent interactive input and output as in Example 4.11, then for

a computation t, we can express yes| t > /dev/null by try twithHred(y), where the

handler symbol Hred :(char)→ X handler is defined to be

(a :char). {outc(y)= y, in(y)= y(a)} .

This again gives a correct handler because the effect theory for interactive input

and output is trivial.

7.4.3 CCS renaming and hiding

The representation of CCS processes [Mil80] from Section 6.5 treats only pro-

cesses, given by action prefix and sum. However, process renaming and hiding

can be represented by handlers. This makes sense, as operations construct the

effects, while renaming and hiding are deconstructive operations.

The renaming t[b/a] can be written as try twithHren(a,b), where the handler

symbol Hren :(act,act)→ F0 handler is defined by:

Hren = (a :act,b :act). {acta′(y)= if a′ = a thenactb(y)elseacta′(y)} ,
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while hiding t\{a} can be written as try twithHhid(a), where the handler symbol

Hhid :(act)→ F0 handler is defined by:

Hhid = (a :act). {acta′(y)= if a′ = a thennilelseacta′(y)} .

Note that handling terms for nil and or are omitted, hence the two operations are

handled by themselves. The equations of the effect theory for CCS refer only to

nil and or, hence both handlers are correct.

However, the implementation of parallel composition in our setting remains

an open problem. To observe the difficulties of using handlers in describing it,

let us first take a look at the simpler case of a synchronisation operator ‖ [vGP].

This is defined by:

nil‖ y= nil ,

or(x1, x2)‖ y= or(x1 ‖ y, x2 ‖ y) ,

acta(x)‖ y= x‖a y ,

where ‖a is defined by:

x‖a nil= nil ,

x‖a or(y1, y2)= or(x‖a y1, x‖a y2) ,

x‖a actb(y)=

acta(x‖ y) if b = a ,

nil otherwise.

Now, the difficulty is not in the fact that we have two recursive definitions, the

second one being parametric; this can be resolved using mutually defined and

parameter-passing handlers, given in Section 7.4.6. The difficulty lies in the fact

that the operator is defined recursively on the structure of both its arguments,

and this is not primitively recursive.

The problems with expressing the parallel composition are very much the

same, except that we need to add complementary and silent actions and that its

definition is a bit more complex because the parallel composition allows unsyn-

chronised actions as well.

7.4.4 Explicit nondeterminism

The evaluation of a nondeterministic computation usually takes only one of all

the possible paths. But in logic programming [CM87], we do an exhaustive



7.4. Examples 119

search for all solutions that satisfy given constraints in the order given by the

solver implementation. Such nondeterminism is represented slightly differently.

We take an effect signature, consisting of operation symbols fail : 0 and pick : 2,

with the effect theory consisting of the following equations, which state that the

operations form a monoid:

z ` pick(z, fail)= z ,

z ` pick(fail, z)= z ,

z1, z2, z3 ` pick(z1,pick(z2, z3))= pick(pick(z1, z2), z3) .

The free-model monad maps a set to the set of all finite sequences of its elements,

which is HASKELL’s nondeterminism monad [PJ03].

A user is usually presented with a way of browsing through the solutions,

for example extracting all the solutions into a list. Since our calculus has no

polymorphic lists (although it could easily be extended with them), we take base

types α and listα, function symbols

nil:listα , cons:(α, listα)→ listα ,

head:(listα)→α , tail:(listα)→ listα ,

append:(listα, listα)→ listα ,

and an appropriate base theory. Then, all the results of a computation of type

Fα can be extracted into a returned value of type Flistα using the handler

{fail= returnnil ,

pick(y1, y2)= y1 tox1 :listα. y2 tox2 :listα. returnappend(x1, x2)} .

Since append is associative and we have append(nil, x) = x = append(x,nil), it is

easy to check that the handler is correct.

7.4.5 Optimal result

Another possibility with the ordinary nondeterminism, when the datatype per-

mits it, is to select the result, optimal to some criterion. For example, we could

choose the greatest integer returned by a computation using a handler

{or(y1, y2)= y1 tox1. y2 tox2. returnmax(x1, x2) .}
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Since both max and sequencing (for nondeterminism) are associative, commuta-

tive, and idempotent, the handler is correct.

Although this handler gives an elegant and concise way of finding an opti-

mum, it is not particularly efficient as it has to traverse all possible returned

values. Even more: if we consider the usual interpretation of nondeterminism, it

is not even possible to implement such a handler. A similar remark applies to the

handler in Section 7.4.4. This also serves to show that equipping a calculus with

a mechanism to check the correctness is not enough, as some computational limi-

tations cannot be captured with equations, and an intervention on the meta-level

is necessary.

7.4.6 Parameter-passing handlers

Sometimes, we wish to handle different instances of the same operation differ-

ently, for example to suppress output after a certain number of outputted char-

acters. Although a handler prescribes a fixed replacement for each operation, we

can use handlers on a function type σ→ τ to simulate handlers on τ that pass

around a parameter of type σ.

Instead of

(xp :σp; yp :τp). {opx(y)=λx :σ. top}op∈Σeff :(σp;τp)→ (σ→ τ) handler .

where all the occurrences of yi it top are applied to some v :σ, the changed pa-

rameter, we write

(xp :σp; yp :τp). {opx(y)@ x :σ= t′op}op∈Σeff :(σp;τp)→ τ@σhandler ,

where t′op results from substituting yi @v for yiv in top. We also write

try twithH(vp; tp)@vasx′ :σ′@ x :σ in t′

instead of

(try twithH(vp; tp)asx′ :σ′ inλx :σ. t′)v .

We could similarly simulate mutually defined handlers by handlers on prod-

uct types, however there are so far no interesting examples of their use.
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7.4.7 Timeout

When the evaluation of a computation takes too long, we may want to abort it

and provide a predefined result instead, a behaviour called timeout. Take the

base theory of integers, together with the relation symbol > : (int,int); and an

effect theory for time, described in Section 2.4.

Then, timeout can be described by a handler which passes around a parame-

ter T :int, which represents the amount of time we are willing to wait before we

abort the evaluation and return yp. The handler is defined by:

(yp : X ). {tick(y)@T :int= tick(if T > 0then y@(T −1)else yp)} .

The handling term is wrapped in tick in order to preserve the time spent during

the evaluation of the handled computation. Since the effect theory for time is

trivial, we could also give a correct handler without tick wrapped around it. But

then applying the handling construct to a computation, which takes a certain

amount of time, results in a computation that takes no time at all, and if tick

represents the actual passing of time, such handler has no known implemen-

tation. This is similar to nondeterminism as presented in Section 7.4.5, where

equations fail to describe the physical limitations of the computational model.

7.4.8 Input redirection

With parameter passing, we can implement the redirection proc < infile, which

feeds the contents of infile to the standard input of proc. If we extend the base the-

ory for interactive input and output with the base type listchar and appropriate

function symbols from Section 7.4.4, then a handler Hin : X @listchar handler,

which passes a string to the input stream of a process, is defined by

{input(y)@`:listchar = if `= nil then input(a. y(a)@nil) else y(head(`))@tail(`)} .

Because the effect theory for interactive input and output is trivial, the handler

is correct.

Unfortunately, there is no obvious way of implementing the pipe t1 | t2: the

difficulty is very much like that with the CCS parallel combinator. A possible

approach, used in so called pseudo-pipes in DOS is to write the output of t1 to

a temporary string and then pass that string to the input of t2. But unlike in

piping, the two processes do not ran in parallel, and if the first one outputs an
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infinite stream of characters (like yes, for example), the evaluation never termi-

nates.

7.4.9 Read-only state

When we have a restricted access to a database, we can describe the state op-

erations by taking a signature, consisting of a single operation symbol lookup :

loc;dat, and the effect theory, generated by the following equations:

lookup`(d. lookup`(d
′. z(d,d′))= lookup`(d. z(d,d)) ,

lookup`(d. z)= z ,

lookup`(d. lookup`′(d
′. z(d,d′)))= lookup`′(d

′. lookup`(d. z(d,d′))) (` 6= `′) .

Now, even though we cannot change the state, we may run a computation,

intercept all the lookups, and provide a replacement value instead. Assuming a

single memory location `, this may be done with a handler, defined as

(d :dat). {lookup`(y)= y(d)} .

We are going to postpone the proof of correctness of the handler to Exam-

ple 8.3, where we are going to construct equations that correspond to the ones of

the effect theory and prove them in the logic. Then, the correctness will follow

from the soundness of the interpretation.

7.4.10 Rollback

When a computation raises an exception while modifying the memory, for exam-

ple, when a connection drops half-way through a database transaction, we want

to revert all the modifications made. This behaviour is termed rollback.

We take the base and the effect signatures for exceptions as in Example 4.9

and state as in Example 4.13, and the effect theory for state, together with the

equation update`,d(raiseexc) = raiseexc for each exception exc ∈ E [HPP06]. Then,

the exception handler, defined in Section 7.4.1, is no longer correct. For example,

if we fix different d1,d2 :dat and set

t0 =def λe :exc. lookup`(d. if d = d1 thenreturnd1 elsereturnd2) ,

then

update`,d1(tryupdate`,d2(raiseexc)with t0)
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evaluates to

update`,d2(returnd2) ,

while

update`,d1(try raiseexcwith t0)

evaluates to

update`,d1(returnd1) .

Instead, we use a handler that resets the state to a predefined value, for

example the one before the evaluation, if an exception occurs. In the case of a

single location `, the handler Hrollback :(dat;exc→ X )→ X handler is defined by

(xp :dat; yp :exc→ X ). {raisee = update`,xp (yp e)} .

Then, we may store the initial state and use the handler on t :Fσ by

!`todp. try twithHrollback(dp; tp)

for some tp :exc→ Fσ.

An alternative is to use a parametrically uniform handler, which does not

modify the memory, but keeps track of all the changes to the location ` in the

parameter, and commits them only after a computation has returned a value,

meaning that no exceptions have been raised. This handler is:

(yp :exc→ X ). {

lookup(y)@d = yd @d

updated′(y)@d = y@d′

raiseexc()@d = yp exc

}

and is used on programs t by

!`todp. try twithH(tp)@dp asx@d inupdated(returnx) .

The second handler can be generalised to the case of multiple locations. Then,

the parameter is a list of all the modified locations, together with their current

state. Computationally, this is preferable to passing around the entire state.

However, such handler is not correct and behaves as expected only when its ini-

tial parameter is an empty list. A similar failure occurs with a handler whose
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passed parameter is a function that rolls back the state in case of an excep-

tion [PP09].

As in the case of read-only state, we are going to postpone the proof of cor-

rectness of the rollback handlers to Examples 8.4 and 8.5.



Chapter 8

Extending the logic with handlers

Finally, we bring the studies of logic for algebraic effects and handlers of alge-

braic effects together, and adapt the logic to account for handlers. This is rel-

atively straightforward: we interpret handlers with models of the effect theory

and the handling construct with induced homomorphisms, and those notions are

already present in the logic.

Just like we introduced two calculi for handlers, one to describe them and one

to use them, we give two separate logics, one to reason about handlers, and one

to reason about computations that use them.

For the first logic, referred to as the handler logic, we take the logic for alge-

braic effects, except that instead of value and computation types and terms, we

take their handler counterparts. That is, the only difference from the logic for

algebraic effects is that the types of the handler logic may contain type variables.

Note that this polymorphism serves only as a parametrisation of the logic, and

adds no new reasoning rules.

We write Γ;∆;Π |Ψ `H ϕ when the judgement Γ;∆;Π |Ψ ` ϕ is derivable in

the handler logic.

Proposition 8.1 Assume that

Γ;∆;Π |Ψ`H ϕ

holds. Then, for any assignment of computation types τ to type variables X , we

have

Γ[τ/X ];∆[τ/X ];Π[τ/X ] |Ψ[τ/X ]`L ϕ[τ/X ] ,

where the substitution [τ/X ] in contexts and propositions is defined in the obvi-

ous way.

125
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Proof We proceed by an induction on the derivation of Γ;∆;Π |Ψ`H ϕ. Since

the handler logic contains no additional reasoning rules, the proof is straightfor-

ward. ä
For the second logic, referred to as the program logic, we also take an exten-

sion of logic for algebraic effects, parametric with regard to the same base and

effect theories as the handler logic. In addition, we parametrise it with a handler

signature Σhand and a handler definition H. Then, we extend computation terms

with the handling construct, which we describe with two equational schemas:

the first one states that the interpretation of the handling construct extends a

given map, while the second one states that it is homomorphic. Finally, we add

an axiom that internalises the correctness of handlers in the logic. We write

Γ;∆;Π |Ψ`P ϕ for judgements, derivable in the program logic.

For any given handler symbol H :(σp;τp)→ τhandler, handler definition

H(H)= (xp :σp; yp :τp). {opx(y)= top}op∈Σeff ,

assignment of program computation types τ to type variables X , program value

terms Γ;∆` vp :σp[τ/X ], and program computation terms Γ;∆` tp :τp[τ/X ], the

additional schemas are:

• β-equivalence for the handling construct:

Γ;∆;Π |Ψ`P try returnvwithH(vp; tp)asx :σ in t =τ[τ/X ] t[v/x]
,

• homomorphic nature of the handling construct:

Γ;∆;Π |Ψ`P tryopv(xi. ti)i withH(vp; tp)asx :σ in t

=τ[τ/X ] top[vp/xp,v/x, tp/yp, (λxi :αi. try ti withH(vp; tp)asx :σ in t/yi)i][τ/X ]

,

• correctness of handlers:

H(H)= (xp :σp; yp :τp). {opx(y)= top}op∈Σeff

Γ, xp :σp; ∆, yp :τp; Π |Ψ`P {top[τ/X ]}op∈Σeff modelsTeff

.

As the handler definition H maps each handler symbol to a correct handler, the

three schemas are sound. It seems as if the last schema could be a consequence of

inheritance from the effect theory and the homomorphic nature of the handling

construct. However, this is not the case.



8.1. The handler logic 127

For example, take the effect theory for nondeterminism and a handler H, de-

fined by H(H)= tor for some y1 :Fσ, y2 :Fσ` tor :Fσ. Inheriting the idempotency

equation z ` or(z, z)= z gives us an equation

Γ;∆, y:Fσ;Π |Ψ`P or(y, y)=Fσ y .

By applying a handler to both sides of the equation, we get

Γ;∆, y:Fσ;Π |Ψ`P tor[try ywithH/y1,try ywithH/y2]=Fσ try ywithH .

Unfortunately, this does not seem sufficient to prove

Γ;∆, y:Fσ;Π |Ψ`P tor[y/y1, y/y2]=Fσ y ,

and we have to assume such equations as axioms. It would be interesting to see

if some proof of such equations is possible within the program logic.

8.1 The handler logic

The main use of the handler logic is in showing that a given handler is correct.

In particular, if for a given collection of handler computation terms top, we show

that {top}op∈Σeff modelsTeff holds, we may use the soundness of the interpretation

to prove that such collection gives a correct handler.

Proposition 8.2 Take a collection of handler computation terms

{xp :σp, x :β; yp :τp, (yi :αi → τ)i ` top :τ}op:β;α1,...,αn∈Σeff

and assume that xp :σp; yp :τp `H {top}op∈Σeff modelsTeff holds.

Then, the handler (xp :σp; yp :τp). {opx(y)= top}op∈Σeff is correct.

Example 8.3 The handler for read-only state, given in Section 7.4.9, is defined

by

(dp :dat). {lookup`(y)= ydp} .

Following the procedure described in Section 5.4, we obtain the following corre-

sponding equations:

(λd. (λd′. yd d′)dp)dp =X (λd. yd d)dp

(λd. y)dp =X y .

The two equations obviously hold, hence `H {tlookup : X }modelsTeff is derivable

and the read-only handler is correct.
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Example 8.4 Similarly, we can prove the correctness of the rollback handler,

given in Section 7.4.10 and defined by

(dp :dat; yp :exc→ X ). {raisee = updatedp (yp e)} .

Operation symbols lookup : dat and update : dat;1 are not handled, hence the

corresponding handler terms for lookup, update, and raise, are:

dp :dat; yp :exc→ X , y:dat→ X ` lookup(d. yd)

dp :dat,d :dat; yp :exc→ X , y: X ` updated(y)

dp :dat, e :exc; yp :exc→ X ` updatedp (y e) ,

while the equations corresponding to the equations of the effect theory are:

lookup(d1.(λd2. lookup(d3. (λd4. yd2 d4)d3))d1)=X lookup(d5. (λd6. yd6 d6)d5) ,

lookup(d1. (λd2. updated2(y))d1)=X y ,

updated1(lookup(d2. (λd3. yd3)d2))=X updated4(yd4) ,

updated1(updated2(y))=X updated2(y) ,

updated1(updatedp (yp e))=X updatedp (yp e) .

After β-reducing the ‘administrative’ λ-abstractions, the first four equations ex-

actly correspond to the equations inherited from the effect theory, while the last

equation is an instance of the fourth one. Hence, we have `H {top : X }op∈Σeff Í Teff

and the rollback handler is correct.

Example 8.5 For the second rollback handler, the handler terms for lookup,

update and raise are

yp :exc→ X , y:dat→ (dat→ X )` λd :dat. (yd)d :dat→ X

d′ :dat; yp :exc→ X , y:dat→ X ` λd :dat. yd′ :dat→ X

exc:exc; yp :exc→ X ` λd :dat. yp exc:dat→ X .

The equations corresponding to the equations of the effect theory are:

λd1. ((λd2. λd3. ((λd4. yd2 d4)d3)d3)d1)d1 =dat→X λd5. ((λd6. yd6 d6)d5)d5 ,

λd1. ((λd2. λd3. yd2)d1)d1 =dat→X y ,

λd1. (λd2. ((λd3. yd3)d2)d2)d =dat→X λd4. (yd)d ,

λd1. (λd2. yd′)d =dat→X λd3. yd′ ,

λd1. (λd2. yp exc)d =dat→X λd3. yp exc ,
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where we have omitted the contexts and types when writing abstractions.

All five equations can be proved using β- and η-equivalence, hence the second

variant of rollback handler is also correct.

8.2 The program logic

In the program logic, we have two slightly different means of describing the in-

duced homomorphism from the free model: the free model principle and the han-

dling construct. The free model principle provides on the fly construction of both

models and homomorphisms inside the logic, while the handling construct re-

quires a fixed handler definition and provides a term constructor to obtain homo-

morphisms. However, the two describe the same concept and are related through

the logic.

Proposition 8.6 Take a handler symbol H :τhandler and a handler definition

H, which maps it to a correct handler

H(H)= {opx(y)= top}op∈Σeff ,

and a computation term Γ;∆` t′ :σ→ τ.

Then, we have

Γ;∆;Π |Ψ`P ∃ ŷ:UFσ→ τ.

ŷextends t′∧ ŷhomomorphism∧try twithH asx in t′x =τ ŷ(thunk t) .

Proof From the correctness of handler H, we get

Γ;∆;Π |Ψ`P {top[τ/X ]}op∈Σeff modelsTeff

and the free model principle entails the existence of a computation variable

ŷ : UFσ→ τ such that

ŷextends t′∧ ŷhomomorphism

holds. We proceed by the principle of computational induction. Define the predi-

cate π as

(y′ :Fσ). try y′withH asx in t′x =τ ŷ(thunk y′) .
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Then, for the base case π(returnx′), we have

Γ;∆;Π |Ψ`P try returnx′withH asx in t′x

= t′x′ (by β-equivalence)

= ŷ(thunkreturnx′) (because ŷextends t′) .

For the step case, take an operation symbol op :β;α1, . . . ,αn. Then, we have

to show π(opx(xi. yixi)i), assuming π(yixi) for all i and xi. We get

Γ;∆;Π |Ψ`P tryopx(xi. yixi)i withH asx in t′x

=Fσ top[try yixi withH asx in t′x/yi]i (by definition of H)

=Fσ top[ ŷ(thunk yixi)/yi]i (by the induction hypotheses)

=Fσ ŷ(thunk(opx(xi. yixi)i)) (because ŷhomomorphism holds) ,

and by the induction principle, we get Γ;∆;Π |Ψ `P π(t) for all program compu-

tation terms t. ä
We could also write a (slightly more complex) variant of the above proposition for

handlers with parameters.

As a basis for studying further properties of the handling construct, we take

axioms for exception handlers, suggested by Levy [Lev06b] (we transcribe the

axioms to our syntax):

try returnvwith{exci = ti}i asx in t′ = t′[v/x]

tryexc j with{exci = ti}i asx in t′ = t j

try twith{exci = exci}i asx inreturnx = t

try(try t1 with{exci = ti}i asx1 in t2)with{exc j = t′j} j asx2 in t =
try t1 with{exci = try ti with{exc j = t′j} j asx2 in t}i asx1 in

try t2 with{exci = t′i}i asx2 in t ,

and “commuting conversions”, suggested by Benton and Kennedy [BK01] (also

transcribed to our syntax):

fst(try twith{exci = ti}i asx in t′)= try twith{exci = fst ti}i asx infst t′ ,

snd(try twith{exci = ti}i asx in t′)= try twith{exci = snd ti}i asx insnd t′ ,

(try twith{exci = ti}i asx in t′)v = try twith{exc j = t jv} j asx in t′v .
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Benton and Kennedy suggested an additional conversion, which corresponds to

Levy’s last (associativity) equation, and two more conversions that describe the

relationship between pattern matching and the handling construct. Since Ben-

ton and Kennedy worked in a call-by-value setting, the proper translation of their

equations involves an explicit sequencing. Then, all the equations translate to an

instance of the associativity equation. However, unlike the conversions for pat-

tern matching, the above three equations remain valid and serve as a motivation

even if we directly transcribe them in the call-by-push-value framework.

Levy’s first two equations are β-equivalence equations, and are instances of

the two axiom schemas that describe the handling construct in our logic. The

third equation is η-equivalence, and can be generalised to

Γ;∆`P try twithH asx inreturnx =τ t (H(H)= {}) .

This follows from Proposition 8.7 and η-equivalence for sequencing.

Proposition 8.7 If H(H)= {}, we have

Γ;∆`P try twithH asx in t′ =τ t tox. t′ .

Proof We proceed by the principle of computational induction. Define the

predicate π to be

(y:Fσ). try ywithH asx in t′ =τ ytox. t′ .

The base case Γ, x′ :σ; ∆`P π(returnx′) is equivalent to

Γ, x′ :σ; ∆`P try returnx′withH asx in t′ =τ t′[x′/x]=τ returnx′ tox. t′ ,

which is derivable by the β-equivalence for the handling construct and sequenc-

ing.

For the step case, take an operation op :β;α1, . . . ,αn. Then, we have to show

π(opx(xi. yixi)i), assuming π(yixi) for all i and xi. Then, we get

`P tryopx(xi. yixi)i withH asx in t′

=τ opx(xi. try yixi withH asx in t′) (by definition of H)

=τ opx(xi. yixi tox. t′) (by the induction hypotheses)

=τ opx(xi. yixi)tox. t′ (by algebraicity of operations) .

By the induction principle, we get Γ;∆`P π(t) for all computation terms t. ä
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Levy’s fourth equation, which states associativity of the exception handling

construct, unfortunately has no valid generalisation of the form

try (try t1 withH(vp; tp)asx1 :σ1 in t2)withH′(v′
p; t′p)asx2 :σ2 in t

=try t1 withH′′(t′′p;v′′
p)asx1 :σ1 in (try t2 withH′(v′

p; t′p)asx2 :σ2 in t) ,

for some H′′ :(σ′′
p;τ′′p)→ τhandler. First, since the handler definition H is fixed,

an appropriate handler symbol H′′ might not exist. Even worse, there may even

be no possible model for it to denote.

Example 8.8 For a counterexample, take: the base theory of integers; an effect

signature with a single unary operation symbol f ; the empty effect theory; a han-

dler signature of symbols H, H′, and H′′, all of type Fint handler; an arbitrary

handler computation term y : Fint ` t f : Fσ; and a handler definition H, such

that

H(H)= { f (y)= ytox. if x < 2thenreturn(x+1)elsereturn0} ,

H(H′)= {} ,

H(H′′)= { f (y)= t f } .

Next, take t2 to be returnx1, and t to be return(x mod 2), where mod is the modulo

operator. Then, the above equation simplifies to

(try t1 withH)tox. return(x mod 2)=Fint try t1 withH′′asx inreturn(x mod 2) .

If t1 = f (return0), we have

return1=Fint t f [return0/y] ,

but if we take t1 = f (return2), we have

return0=Fint t f [return0/y] .

Hence, there is no such t f because the effect theory is empty and as such consis-

tent.

However, the associativity equation for the exception handler, just like the

three conversions suggested by Benton and Kennedy, turns out to be an instance

of Proposition 8.10, which describes the commutativity between the handling

construct and certain homomorphisms.
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Definition 8.9 Take handler symbols

H :(σp;τp)→ τhandler ,

H′ :(σ′
p;τ′p)→ τ′ handler ;

a handler definition H, given by

H(H)= {opx(y)= top}op∈Σeff ,

H(H′)= {opx(y)= t′op}op∈Σeff ;

handler value terms

Γ;∆` vp :σp and Γ;∆` vp :σ′
p ;

and handler computation terms

Γ;∆` tp :τp and Γ;∆` t′p :τ′p .

We say that a handler computation term Γ;∆, y:τ` th :τ′ is a homomorphism

between H(vp; tp) and H′(v′
p; t′p), if

Γ;∆`P th[top[vp/xp; tp/yp]/y]=τ′ t′op[v′
p/xp; t′p/yp, (λxi :αi. th[yixi/y]/yi)i]

holds for all operation symbols op:β;α1, . . . ,αn.

Proposition 8.10 Take handler symbols, handler definition, program value and

computation terms as in the statement of Definition 8.9, and let ϕh state that

Γ;∆, y:τ` th :τ′

is a homomorphism between H(vp; tp) and H′(v′
p; t′p). Then, we have

Γ;∆;Π |Ψ,ϕh `P th[try twithH(vp; tp)asx in t′/y]=τ′ try twithH′(v′
p; t′p)asx in th[t′/y] .

Proof We proceed by the principle of computational induction on the handled

term. For the base case, where the handled term is a returned value, we have

`P th[try returnvwithH(vp; tp)asx in t′/y]

=τ′ th[t′[v/x]/y] (by β-equivalence)

=τ′ (th[t′/y])[v/x] (because x is not free in th)

=τ′ try returnvwithH′(v′
p; t′p)asx in th[t′/y] (by β-equivalence) ,
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while for a step case for an operation symbol op:β;α1, . . . ,αn, we have

`P th[tryopx(xi. yixi)i withH(vp; tp)asx in t′/y]

= th[top[vp/xp; tp/yp, (λxi. try yixi withH(vp; tp)asx in t′/yi)i]/y]

(by definition of H)

= (th[top[vp/xp; tp/yp]/y])[λxi. try yixi withH(vp; tp)asx in t′/yi]i

(because yi are not free in th)

= t′op[v′
p/xp; t′p/yp; (λxi :αi. th[yixi/y]/yi)i][λxi. try yixi withH(vp; tp)asx in t′/yi]i

(because th is a homomorphism)

= t′op[v′
p/xp; t′p/yp;λxi :αi. th[try yixi withH(vp; tp)asx in t′/y]/yi]i

(by substitution and because yi are not free in v′
p, t′p, and th)

= t′op[v′
p/xp; t′p/yp;λxi :αi. try yixi withH′(v′

p; t′p)asx in th[t′/y]/yi]i

(by induction hypothesis)

= tryopx(xi. yixi)i withH′(v′
p; t′p)asx in th[t′/y]

(by definition of H′.)

ä

Corollary 8.11 Take handler symbols

H :(σp;τp)→ Fσ2 handler ,

H′ :(σ′
p;τ′p)→ τhandler ,

H′′ :(σ′′
p;τ′′p)→ τhandler ;

a handler definition H, given by

H(H)= {opx(y)= top}op∈Σeff ,

H(H′)= {opx(y)= t′op}op∈Σeff ,

H(H′′)= {opx(y)= t′′op}op∈Σeff ;

program value terms vp :σp, v′
p :σ′

p, and v′′
p :σ′′

p; and program computation terms

tp :τp, t′p :τ′p, and t′′p :τ′′p.

Furthermore, let ϕh state that

Γ;∆, y:Fσ2 ` try ywithH′(v′
p; t′p)asx2 :σ2 in t :τ



8.2. The program logic 135

is a homomorphism between H(vp; tp) and H′′(v′′
p; t′′p). Then, the associativity

equation

Γ;∆ |ϕh `P try (try t1 withH(v; t)asx1 :σ1 in t2)withH′(v′; t′)asx2 :σ2 in t

=τ try t1 withH′′(t′′;v′′)asx1 :σ1 in (try t2 withH′(v′; t′)asx2 :σ2 in t) ,

holds.

Corollary 8.12 Take the effect theory for exceptions and a handler symbol Hexc,

defined as in Section 7.4.1. Then, we have

Γ;∆`P try (try t1 withHexc(texc)asx1 :σ1 in t2)withH′(v′; t′)asx2 :σ2 in t

=τ try t1 withHexc(λe :exc. try texc ewithH′(v′; t′)asx2 :σ2 in t)asx1 :σ1 in

try t2 withH′(v′; t′)asx2 :σ2 in t

for any Γ;∆` texc :exc→ τ.

Proof Since

H(Hexc)= (y:exc→ X ). {raisee = y e}:(exc→ X )→ X handler ,

we immediately have

try yexc ewithH′(v′; t′)asx2 :σ2 in t = (λe :exc. try yexc ewithH′(v′; t′)asx2 :σ2 in t) e .

Thus,

y:Fσ2 ` try ywithH′(v′; t′)asx2 :σ2 in t

is a homomorphism between Hexc(yexc) and

Hexc(λe :exc. try yexcewithH′(v′; t′)asx2 :σ2 in t) .

The associativity follows from Proposition 8.10. ä
Unlike associativity, the three conversions suggested by Benton and Kennedy

hold not only for exception handlers, but for a wider class of handlers, defined by

effect terms.

Definition 8.13 A uniform handler

(xp :βp; (ypi :αpi → X )i). {opx(y)= top}op∈Σeff :(βp; (αpi → X )i)→ X handler
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is simple, if for each op :β;α1, . . . ,αn ∈ Σeff, the handling term top is obtained by

instantiating an effect term

xp :βp, x :β; (zpi :(αpi))i, (z j :(α j)) j ` eop .

In particular, we replace each z :(α) in eop by (xi). yxi for some y:α→ X .

Example 8.14 Exception handler and stream redirection handler, as defined in

Section 7.4.2, are both simple. CCS hiding and renaming are not simple because

their definition includes conditionals. However, one could straightforwardly ex-

tend effect terms with conditionals and the following results adapt routinely.

Proposition 8.15 Assume that H(H) is a simple handler and take a computa-

tion term Γ;∆, y :τ` th :τ′. Next, for all operation symbols op :β;α1, . . . ,αn ∈Σeff,

define ϕop to be

th[opx(x j. yjx j) j/y]=τ′ opx(x j. th[yjx j/y]) j

and let ϕh state that th is a homomorphism between handlers H(xp; yp) and

H(xp; (λxpi :αpi. th[ypixpi/y])i). Then, we have

Γ, x :β; ∆, (yj :α j → τ) j |Ψ,
∧

op∈Σeff

ϕop `P ϕh .

Proof First, note that

x :β; (ypi :αpi → τ)i `P th[e[(xi). yixi/zi]i/y]=τ′ e[(xi). th[yixi/y]/zi]i

holds for all effect terms x :β; (ypi : (αpi))i ` e, in particular the ones that de-

fine H. The proof proceeds by induction on the structure of e: the base case is

immediate and the step case follows from the assumption of the proposition.

Then, we have:

`P th[top/y]

=def th[eop[(xi). yixi/zi]i/y]

=τ′ eop[(xi). th[yixi/y]/zi]i

(by assumption)

=τ′ eop[(xi). (λxi :αi. th[yixi/y])xi/zi]i

(by η-equivalence)

=τ′ eop[(xi). yixi/zi]i[λxi :αi. th[yi(xi)/y]/yi]i

(by substitution)

=def top[λxi :αi. th[yi(xi)/y]/yi]i ,
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where yi ranges over both arguments of the operation and parameters of the

handler. Thus, th is a homomorphism between H(xp; yp) and

H(xp; (λxpi :αpi. th[ypixpi/y])i) .

ä
It is easy to check that the condition is satisfied if we define th to be fst y,

snd y, or yv, hence simple handlers satisfy generalisations of equations suggested

by Benton and Kennedy.

Corollary 8.16 Let H(H) be a simple handler, given as above. Then, we have

Γ;∆`P fst(try twithH(vp; tp)asx in t′)=τ1
try twithH(vp; (fst tpi)i)asx infst t′ ,

Γ;∆`P snd(try twithH(vp; tp)asx in t′)=τ2
try twithH(vp; (snd tpi)i)asx insnd t′ ,

Γ;∆`P (try twithH(vp; tp)asx in t′)v =τ try twithH(vp; (tpi)iv)asx in t′v .





Chapter 9

Recursion

Now that we have developed our approach, we extend it with recursion. For that

reason, we turn from the category Set of sets to the category ω-Cpo of countable-

chain complete partial orders (ω-cpos) and continuous maps between them (see

Example 2.36 and [GHK+03]). We first extend the representation of the underly-

ing system, then introduce a least fixed point constructor to computation terms,

and observe the impact that the recursion has on the reasoning rules of the logic.

Finally, we note the differences in the presence of handlers.

9.1 Base and effect theories

To adapt the base theory to recursion, we first extend its formulae with inequa-

tions v1 Éβ v2, typed as

Γ` v1 :β Γ` v2 :β

Γ` v1 Éβ v2 :form
.

Then, we demand that the base theory is closed under the following additional

rules:

• reflexivity, transitivity, and antisymmetry of inequality:

Γ |Ψ`Tbase v Éβ v
,

Γ |Ψ`Tbase v1 Éβ v2 Γ |Ψ`Tbase v2 Éβ v3

Γ |Ψ`Tbase v1 Éβ v3

,

Γ |Ψ`Tbase v1 Éβ v2 Γ |Ψ`Tbase v2 Éβ v1

Γ |Ψ`Tbase v1 =β v2

.

139
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Finally, we select a subset of computable relation symbols and for each of the

non-computable relation symbols rel : (β), we specify a subset of its arguments

βi as admissible. We take all arguments of computable relation symbols to be

admissible.

Definition 9.1 An interpretation I of the base signature Σbase in ω-Cpo is given

by:

• an ω-cpo �β�I for each base type β, such that �α�I is a countable set (ω-cpo,

equipped with the discrete partial order) for each arity type α;

• a continuous map

�f�I : �β1�I×·· ·×�βn�I →�β�I

for each function symbol f :(β1, . . . ,βn)→β ∈Σbase;

• a subset

�rel�I ⊆ �β1�I×·· ·×�βn�I

for each non-computable relation symbol rel : (β1, . . . ,βn) ∈ Σbase, for which

�rel�I is a sub-cpo when one fixes all of its non-admissible arguments;

• a subset

�rel�I ⊆ �β1�I×·· ·×�βn�I

for each computable relation symbol rel :(β1, . . . ,βn) ∈Σbase, such that there

exists a continuous map

χ�rel�I : �β1�I×·· ·×�βn�I → 1+1 ,

such that χ�rel�I(γ)= inj1(?) if and only if γ ∈ �rel�I.

We extend the effect theory with conditional inequations Γ; Z ` e1 É e2 (ϕ),

where Γ; Z ` e1 and Γ; Z ` e2 are well-typed effect terms, and Γ ` ϕ : form is a

well-typed base formula.

In addition, we assume that the effect signature Σeff contains an operation

symbol Ω : 0, and that the effect theory Teff contains an inequation z ` Ω É z,

saying that Ω is the least element [HPP06].
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Example 9.2 The effect theory given by the equations for a semi-lattice de-

scribes the convex powerdomain in the presence of recursion. To describe other

types of powerdomains, the effect theory has to be extended with

z1, z2 ` z1 É or(z1, z2) ,

for the lower powerdomain, or with

z1, z2 ` or(z1, z2)É z1

to get the upper powerdomain [HPP06].

The effect theory gives rise to a countable discrete Lawvere ω-Cpo-theory L

and an adjunction F aU : ModL(ω-Cpo)→ω-Cpo in a standard way [HP06].

9.2 Terms and predicates

In the term language, we keep the same value and computation types, except

that we limit relation symbols in conditionals to computable ones. We add recur-

sion with a least fixed point construct µy:τ. t :τ, which is typed as

Γ;∆, y:τ` t :τ

Γ;∆` µy:τ. t :τ
.

Note that the fixed point construct is not limited to functions, and can be used

on arbitrary computation terms.

Example 9.3 A computation term

µy:F1. or(return?,outa(y)):F1

represents a computation that nondeterministically chooses between returning

?, or outputting the character a and then recursively calling itself. Thus, it can

output a finite number of characters and then return ?, or diverge, outputting

an infinite number of characters.

We extend the propositions of the logic with two additional atomic proposi-

tions: v1 Éσ v2 and t1 Éτ t2, which are typed as

Γ;∆` v1 :σ Γ;∆` v2 :σ

Γ;∆;Π` v1 Éσ v2 :prop
,

Γ;∆` t1 :τ Γ;∆` t2 :τ

Γ;∆;Π` t1 Éτ t2 :prop
.

We additionally specify a subset of predicate variables as admissible.
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Definition 9.4 A value variable x is admissible in a proposition ϕ:prop if:

• ϕ does not contain x;

• ϕ is of the form π(v; t) and π is an admissible predicate;

• ϕ is of the form rel(v) and all terms vi that contain x are admissible argu-

ments of rel;

• ϕ is of the form v1 =σ v2, t1 =τ t2, v1 Éσ v2 or t1 Éτ t2;

• ϕ is of the form >, ⊥, ϕ1 ∧ϕ2, or ϕ1 ∨ϕ2, and x is admissible in ϕ1 and ϕ2;

• ϕ is of the form ϕ1 ⇒ϕ2, and x does not appear in ϕ1 and is admissible in

ϕ2.

• ϕ is of the form ∀x′ :σ. ϕ′ for x 6= x′ or ∀y:τ. ϕ′, and x is admissible in ϕ′.

For computation variables, the definition is analogous. A predicate π:prop(σ;τ)

is admissible, if:

• π is an admissible predicate variable;

• π is of the form (x :σ; y:τ). ϕ, and all the variables x are admissible in ϕ.

• π is of the form νP : (σ;τ). π′, where P is an admissible predicate variable

and π′ is an admissible predicate.

As before, we extend the interpretation to value types, which are interpreted

by ω-cpos, and to computation types, which are, due to the presence of the in-

equation z ` Ω É z in the effect theory, interpreted by ω-cppos, that is ω-cpos

with a least element ⊥.

It is routine to show that for each computation term Γ;∆, y:τ` t :τ, the inter-

pretation �t� : �Γ� ×�∆� →U�τ� yields a continuous map, hence we can interpret

the computation fixed point construct as a least fixed point construction, which

also yields a continuous map. As before, propositions Γ;∆;Π` ϕ :prop are inter-

preted by subsets

�ϕ� ⊆ �Γ� ×�∆� ×�Π�

while predicates Γ;∆;Π` π:prop(σ;τ) are interpreted by maps

�π� : �Γ� ×�∆� ×�Π� →P(�σ� ×U�τ�) .



9.2. Terms and predicates 143

Proposition 9.5 Take any proposition Γ;∆;Π ` ϕ : prop, any a ∈ �Γ�, and any

U ∈ �Π� such that Ui is a sub-cpo of �σi� ×U�τi� for any admissible predicate

variable Pi :prop(σi;τi) ∈Π. Then, the subset

{〈γ,δ〉 ∈ �Γ� ×�∆� | 〈γ,δ,U〉 ∈ �ϕ� and

for all i ∈ {1, . . . ,n}, either γi = ai or xi is admissible in ϕ}

is a sub-cpo of �Γ� × �∆�. Above, we effectively fix all value variables except for

some admissible ones.

Take any predicate Γ;∆;Π ` π :prop(σ;τ), and any 〈γ,δ,U〉 ∈ �Γ� ×�∆� ×�Π�
such that Ui is a sub-cpo of �σi� ×U�τi� for any admissible predicate variable

Pi :prop(σi;τi) ∈Π. Then, the subset �π�(γ,δ,U) is a sub-cpo of �σ� ×U�τ�
Proof We proceed by structural induction. All the cases proceed routinely. ä

Example 9.6 Existential quantifiers cannot be used when constructing admis-

sible propositions and predicates. For example, take a base type nat∞, together

with the base theory of integers, and an additional element ∞ :nat∞ such that

n É∞ for all integers n. Then, take the admissible predicate

π=def (x1 :nat∞). x1 Énat∞ x2 ∧ x2 6=∞ .

For any assignment of an integer n to x2, we get a finite sub-cpo {0,1, . . . ,n}.

However, the interpretation of the predicate

(x1 :nat∞). ∃x2 :nat∞. π(x1)

is the subset of all integers, and is not a sub-cpo.

Example 9.7 We also cannot use least fixed points of predicates to construct

admissible predicates. Again, take the base signature and theory as in Exam-

ple 9.6, and take the admissible predicate

(x :nat∞). P(succ(x))∧P(0) ,

where P is an admissible predicate variable. The interpretation of

µP :(nat∞). (x :nat∞). P(succ(x))∧P(0)

is again the subset of all integers and as such not a sub-cpo.
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9.3 Reasoning rules

To the logic, we add the reasoning rules for the two inequalities and for the

computation fixed point construct:

• reflexivity, transitivity, and antisymmetry of value inequality:

Γ;∆;Π |Ψ`L v Éσ v
,

Γ;∆;Π |Ψ`L v1 Éσ v2 Γ;∆;Π |Ψ`L v2 Éσ v3

Γ;∆;Π |Ψ`L v1 Éσ v3

,

Γ;∆;Π |Ψ`L v1 Éσ v2 Γ;∆;Π |Ψ`L v2 Éσ v1

Γ;∆;Π |Ψ`L v1 =σ v2

,

• reflexivity, transitivity, and antisymmetry of computation inequality:

Γ;∆;Π |Ψ`L t Éτ t
,

Γ;∆;Π |Ψ`L t1 Éτ t2 Γ;∆;Π |Ψ`L t2 Éτ t3

Γ;∆;Π |Ψ`L t1 Éτ t3

,

Γ;∆;Π |Ψ`L t1 Éτ t2 Γ;∆;Π |Ψ`L t2 Éτ t1

Γ;∆;Π |Ψ`L t1 =τ t2

,

• least pre-fixed point of a computation:

Γ;∆;Π`L t[µy:τ. t/y]Éµy:τ. t
,

• principle of Scott induction:

Γ;∆;Π |π(Ω),∀y:τ. π(y)⇒π(t)`L π(µy:τ. t)
.

In the principle of Scott induction, π is restricted to be admissible. Other rules of

the logic remain the same, except that the predicate in the principle of induction

over computations is also restricted to be admissible.

The proof of soundness of the modified rules is straightforward for the re-

flexivity, transitivity, and antisymmetry of the inequalities. Then, the rule for

the least pre-fixed point construct of a computation is sound by the definition of

µy :τ. t. The principle of Scott induction is sound because π is admissible, hence

�π� yields a sub-cpo. For the principle of computational induction, we show that
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�π� is a sub-cpo because π is an admissible predicate. Then, we get a continuous

map j : �π� →UF�σ� and proceed as in Proposition 5.4.

All the uses of the principle of computational induction in Chapter 6 were for

admissible predicates, hence those results continue to hold in the presence of re-

cursion. This, however, does not give the translation or guarantee its soundness

when recursion is already featured in the source logic, for example in Hennessy-

Milner logic for CCS with recursively defined processes.

9.4 Handlers

Handlers can be extended with recursion along the same lines as the logic. All of

the uses of the principle of computational induction in Chapter 8 were again only

for admissible predicates, hence all the obtained results continue to hold. Note

that correct handlers cannot redefine Ω because of the inequation Ω É z, hence

the handling constructs are interpreted by strict homomorphisms.





Chapter 10

Conclusions

10.1 Accomplishments

We started with the a-calculus, a minimal equational logic with the purpose of

emphasising the distinguishing features of effectful computations. This purpose

was fulfilled as almost all observations in the logic were made in the a-calculus

already: the fundamental nature of sequencing; algebraicity of operations; the

principle of computational induction, though described in terms of normal forms;

derivability of η-equivalence and associativity for sequencing; and commutativ-

ity of sequencing for commutative effect theories. In addition, the a-calculus is

complete with regard to a fairly general denotational semantics.

The first aim of the thesis was to propose a powerful logic of algebraic ef-

fects. The proposed logic builds on Levy’s versatile call-by-push-value approach,

which describes both call-by-name and call-by-value, and extends it with a com-

prehensive set of logical rules, including two algebraic principles which capture

the essence of free models. The logic has a sound semantics in terms of sets,

and can easily be adapted to incorporate recursion. The resulting logic is in-

deed powerful, as seen in its use in generalising the results of the a-calculus and

in translating three different program logics: Moggi’s computational λ-calculus,

Hennessy-Milner logic, and Moggi’s variant of Pitts’s evaluation logic, restricted

to effects that admit a representation with balanced theories.

The second aim of the thesis was to give an algebraic treatment of exception

handlers. We achieved this aim by interpreting exception handlers as models

of the theory for exceptions and the handling construct using the induced ho-

momorphism from the free model. This approach leads naturally to handlers of

147
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other algebraic effects, which is a completely novel programming concept. We

identified the handler correctness issue that arises with this generalisation, and

proposed a reasonable solution, which introduces two languages: one to define

handlers and one to use them. Then, we presented the flexibility of generalised

handlers by using them to describe many unrelated computational concepts from

both theory and practice. Finally, we extended the logic for algebraic effect with

handlers. Doing this was straightforward, which highlights both the modular

structure of the logic and the naturalness of the concept of handlers.

10.2 Future work

On the topic of the a-calculus, there is little to be done, except giving an opera-

tional semantics. Another option would be to formalise it in one of the theorem

provers such as Coq [Tea], Isabelle [NPW02], or Twelf [PS99]. This would also

serve as a base for the formalisation of the logic.

Instead, it would be interesting to develop the term language of the logic into

an independent equational logic. To do so, one would first have to state the effect

theory in terms of a conditional equational theory, closed under a suitable set of

rules [Plo06], rather than a collection of conditional equations. Then, we could

also extend semantics to a more general category and seek a possible proof of

completeness.

The presented logic seems hard to grasp due to its size. This comes as no

surprise as we wanted a powerful and comprehensive logic. We could make some

simplifications, however. For example, we could eliminate computation variables

in favour of value variables over thunks, or allow arity and parameter types of

operations to be first-order types. This would allow us to express almost all of

the logic without the use of sequences, which are all too prevalent in the current

presentation. Another possibility is to study a fragment of the logic such as

the equational logic mentioned above, or a modal fragment without first-order

connectives and with modalities taken as primitives.

Although the successful translation of Moggi’s computational λ-calculus, of

Hennessy-Milner logic, and of Moggi’s variant of Pitts’s evaluation logic pro-

vides some evidence of the expressiveness and versatility of the logic, there are

many other logics still to be embraced. On one hand, we have various logics

based on evaluation logic, for example global evaluation logic [GSM06] or dy-
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namic logic [SM04]. And on the other hand, we have state logics as the Hoare

logic [Hoa69] and separation logic, whose translation would probably require the

logic to be adapted to a coalgebraic treatment of effects, which seems more natu-

ral for state [PS04].

Finally, the logic has been developed only over the categories of sets and of

ω-cpos. There is an open question of what the logic should be over a general

category, and a more immediate question on how to give a logic over the category

of pre-sheaves or sheaves. This would allow the inclusion of new names [GP01]

and local variables [PP02], which should, together with the above mentioned

treatment of state, give way to a translation of separation logic [Rey02].

The concept of handlers of algebraic effects is novel and relatively unexplored,

so there are still many open questions. For example, the language lacks a gen-

eral operational semantics, which should generalise the one, given by Benton

and Kennedy [BK01]. Then, the work done on combinations of effects should be

extended to combinations of handlers.

However, the most important open problem is how to simultaneously handle

more than one computation. This would allow an algebraic treatment of the CCS

parallel operator or the UNIX pipe combinator. Unfortunately, immediate ideas

such as bi-homomorphisms or thunked computations in parameters fail.

The separation between the language that describes and the language that

uses handlers forms the core of our approach. This has advantages, as it simpli-

fies reasoning and gives the language designer a better control over the handlers

allowed. Still, it would be interesting to explore the option of a single language.

A possible solution would be to give a single language with a suitable type-theory

that limits handlers to uniform or simple ones, and by that ensures that all well-

typed handlers are correct.

Finally, handlers are a programming concept, and their true value can be

seen only after they have been implemented. As a first step, a toy language

eff, is being developed by the author in co-operation with Andrej Bauer at the

University of Ljubljana. As the next step, we could extend HASKELL [PJ03] in

two ways: by enriching the built-in effects with operations and handlers, or by

giving programmers a way to write their own handlers with no direct access to

effects, which can be used to program in an extension of the monadic style.
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