LOCAL ALGEBRAIC
EFFECT THEORIES

Ziga Luksic¢ Matija Pretnar

University of Ljubljana, Slovenia

Under consideration for publication in J. F, unctional Programming

Local Algebraic Effect Theories

Ziga Luksi¢ and Matija Pretnarx
University of Ljubljana, Faculty of Mathematics and Physics, Slovenia

(e-mail: ziga.luksic@fmf -uni-lj.si, matija.pretnar@fmf .uni-1j.si)

-_—

Abstract

Algebraic effects are computational effects that can be described with a set of basic operations and
equations between them. As many interesting effect handlers do not respect these equations, most
approaches assume a trivial theory, sacrificing both reasoning power and safety.

We present an alternative approach where the type system tracks equations that are observed
in subparts of the program, yielding a sound and flexible logic, and paving a way for practical
optimizations and reasoning tools.

Algebraic effects are computational effects that can be described by a signature of primitive
operations and a collection of equations between them (Plotkin & Power, 2001; Plotkin &
Power, 2003), while algebraic effect handlers are a generalization of exception handlers
to arbitrary algebraic effects (Plotkin & Pretnar, 2009; Plotkin & Pretnar, 2013). Even
though the early work considered only handlers that respect equations of the effect theory, a
considerable amount of useful handlers did not, and the restriction was dropped in most —
though not all (Ahman, 2018) — of the later work on handlers (Kammar et al. ,2013; Bauer
& Pretnar, 2015; Leijen, 2017; Biernacki et al., 2018), resulting in a weaker reasoning logic
and imprecise specifications.

Our aim is to rectify this by reintroducing effect theories into the type system, tracking
equations observed in parts of a program. On one hand, the induced logic allows us to
rewrite computations into equivalent ones with respect to the effect theory, while on the
other hand, the type system enforces that handlers preserve equivalences, further specifying
their behaviour. After an informal overview in Section 1, we proceed as follows:

e The syntax of the working language, its operational semantics, and the typing rules
are given in Section 2.
Determining if a handler respects an effect theory is in general undecidable (Plotkin
& Pretnar, 2013), so there is no canonical way of defining such a judgement. There-
fore, the typing rules are given parametric to a reasoning logic, and in Section 3, we
present some of the more interesting choices.
Since the definition of typing judgements is intertwined with a reasoning logic, we
must be careful when defining the denotation of types and terms. Thus, in Section 4,
we first introduce a set-based denotational semantics that disregards effect theories
and prove the expected meta-theoretic properties.

* This material is based upon work supported by the Air Force Office of Scientific Research under
award number FA9550-17-1-0326.

PART |

ALGEBRAIC EFFECTS

every computation

either

returns a value

or

calls an operation

beep choose

let divide m n =
beep ()5 m / n
in failQ 3
let x = choose 42 12 in
1f x > 20 then
divide x 6

else
divide x (choose 0@ 4)

signature

®: 2 beep: 1 fail: O

z2®z=2
21®290=29®21
(21©22)®23 =219 (220 23)
beep(z1) ® beep(z2) = beep(z1 & 29)
fail() & fail() = fail()

G : 2 beep: 1 fail: O

z2®z=2
21®290=29®21
(21®22)D23=210(22®23)
beep(z1) ® beep(z2) = beep(z1 & 29)
fail() & fail() = fail()

eftect theory

signature

2 ::=1{opy:k1,...,0p, : kp}

T:=z|op(Ty,...,T,)
§:={T1=T4, ..., T, =T,}

effect theory

signature

2 ::=1{op; : k;}

T :=z|op(T});
& :={T; =T}

effect theory

values

vi=x|()]|funx—c
c.:=retv|dox—ciinco|vive|

op(c;);

computations

A:=unit|A—-C

C ::=Al{op;:k;}

vi=x|()]|funx—c
c.:=retv|dox—ciinco|vive|

op(c;);

value types

A:=unit|A—-C

C:..:=Al{op,;:k;}

computation types

value typing

x1:A1,...,x6, A, FU:A

xX1:A1,...,xn:ApFc:C

computation typing

(x:A)el
I'Fx:A ['F():unit

[''x:AkFc:C

['Ffunx—c:A—-C

I'Fvi:A-C ['Fvo:A
['Fvive:C

['Fv:A
['Fretv:Al2X

['Fe1:AlXZ I'x:AFco:B'!'2X
[Fdox<—ciinco:B!2

[Fl—ci :A!Z]i op;:k; €X
I'Fop(c;); :A 2

X =ynit ()

(fun x—c)v =C clu/x]

funx—vx =p_.c v

dox —retvinc =C clu/x]

do x —op(c;); Inc
—C
op(do x — ¢; In ¢);

standard congruence equations

(T=T)e€ gglobal [Ci :Q]i
Tlcilzil; =c T'lcilzil;

every computation

either

returns a value

or

calls an operation

Vv :A. ¢p(ret v)

[Vei tALZ. \plei) = Pplop(ci)ilop, ;e s

Ve:AlZ. ¢(c)

dox—cinretx=c

do x1 —c1 In (do x9 — ¢9 1In ¢)

do xo —(dox1 —cy1nco)inc

for 2 ={®: 2,beep: 1}, we have:
dox —cin (c;1 ®co)
(doxhcincl)é(doxhcincz)

do x — c1 1n beep(cy)

beep(do x — c1 1n ¢9)

do x1 —c1 1n (do x9 < ¢c9 In ¢)

do xo —c9 In (do x1 <— c¢1 In ¢)

Algebraic Foundations for Effect-Dependent Optimisations

Ohad Kammar

Gordon D. Plotkin

Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh, Scotland

ohad.kammar@ed.ac.uk

Abstract

We present a general theory of Gifford-style type and effect anno-
tations, where effect annotations are sets of effects. Generality is
achieved by recourse to the theory of algebraic effects, a develop-
ment of Moggi’s monadic theory of computational effects that em-
phasises the operations causing the effects at hand and their equa-
tional theory. The key observation is that annotation effects can be
identified with operation symbols.

We develop an annotated version of Levy’s Call-by-Push-Value
language with a kind of computations for every effect set; it can
be thought of as a sequential, annotated intermediate language.
We develop a range of validated optimisations (i.e., equivalences),
generalising many existing ones and adding new ones. We classify
these optimisations as structural, algebraic, or abstract: structural
optimisations always hold; algebraic ones depend on the effect
theory at hand; and abstract ones depend on the global nature of
that theory (we give modularly-checkable sufficient conditions for
their validity).

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers; Optimization; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Logics of programs; F3.2 [Semantics of Pro-
gramming Languages]: Algebraic approaches to semantics; Deno-
tational semantics; Program analysis; F3.3 [Studies of Program
Constructs): Type structure

General Terms Languages, Theory.

Keywords Call-by-Push-Value, algebraic theory of effects, code
transformations, compiler optimisations, computational effects, de-
notational semantics, domain theory, inequational logic, relevant
and affine monads, sum and tensor, type and effect systems, uni-
versal algebra.

1. Introduction

In Gifford-style type and effect analysis [27], each term of a pro-
gramming language is assigned a type and an effect set. The type
describes the values the term may evaluate to; the effect set de-
scribes the effects the term may cause during its computation, such
as memory assignment, exception raising, or I/O.

For example, consider the following term M:

if true then x := 1 else x := deref(y)

[Copyright notice will appear here once "preprint’ option is removed.]

gdp@ed.ac.uk

It has unit type 1 as its sole purpose is to cause side effects;
it has effect set {update, lookup}, as it might cause memory
updates or look-ups. Type and effect systems commonly convey
this information via a type and effect judgement:

x:Loc,y:LocHM:1! {update, lookup}

The information gathered by such effect analyses can be used
to guarantee implementation correctness', to prove authenticity
properties [15], to aid resource management [44], or to optimise
code using transformations. We focus on the last of these. As an
example, purely functional code can be executed out of order:

X Mi; y+ Ma; N = ¥y Ma; x+ My; N

This reordering holds more generally, if the terms M; and M, have
non-interfering effects. Such transformations are commonly used in
optimising compilers. They are traditionally called optimisations,
even if neither side is always the more optimal.

In a sequence of papers, Benton et al. [4-8] prove soundness of
such optimisations for increasingly complex sets of effects. How-
ever, any change in the language requires a complete reformulation
of its semantics and so of the soundness proofs, even though the
essential reasons for the validity of the optimisations remain the
same. Thus, this approach is not robust, as small language changes
cause global theory changes.

A possible way to obtain robustness is to study effect systems
in general. One would hope for a modular approach, seeking to
isolate those parts of the theory that change under small language
changes, and then recombining them with the unchanging parts.
Such a theory may not only be important for compiler optimisations
in big, stable languages. It can also be used for effect-dependent
equational reasoning. This use may be especially helpful in the
case of small, domain-specific languages, as optimising compilers
are hardly ever designed for them and their diversity necessitates
proceeding modularly.

The only available general work on effect systems seems to
be that of Marino and Millstein [28]. They devise a methodology
to derive type and effect frameworks which they apply to a call-
by-value language with recursion and references; however, their
methodology does not account for effect-dependent optimisations.

Fortunately, Wadler and Thiemann [46, 47] had previously
made an important connection with the monadic approach to
computational effects. They translated Jjudgements of the form
'~ M: Alein aregion analysis calculus to judgements of the
form I = M" : T. A in a multi-monadic calculus. They gave the
latter calculus an operational semantics, and conjectured the exis-
tence of a corresponding general monadic denotational semantics
in which 7. would denote a monad corresponding to the effects in
€, and in which the partial order of effect sets and inclusions would

_
'E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links 0.5, 2009.
http://groups.inf.ed.ac.uk/links .

2011/11/16

PART I

EFFECT HANDLERS

choose

beep

let divide m n =
beep ()5 m / n
in
let x = choose 42 12 in
1f x > 20 then
divide x 6
else

divide x (choose @ 4)

choose

let goleft = handler
choose ki ko = k1 ()
in beep
with goleft handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
1f x > 20 then
divide X 6

else
divide x (choose 0 4)

choose

let goRight = handler
choose ki ko = k2 ()
in beep
with goRight handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in fw<:> 3
1f x > 20 then
divide X 6
else

divide x (choose @ 4)

choose

let pickMax = handler
choose ki k2 =
o max (ki () (ke ()
1N beep
with pickMax handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
1f x > 20 then
divide x 6
else

divide x (choose 0 4)

choose

let pickMax = handler
choose ki k2 = o
max (ki ()) (k2 ())
fail = -inf
in beep
with pickMax handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
1f x > 20 then
divide X 6
else

divide x (choose 0 4)

let sumAll = handler
choose ki k2 —
ki () + k2 ()
fail > 0@
beep k = k ()
in
with sumAll handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
1f x > 20 then
divide x 6

else
divide x (choose 0 4)

choose

let tolList = handler
choose ki k2 =
ki () + k2 ()
fail = []
beep k = k ()
ret x = [x]
in
with tolist handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
1f x > 20 then
divide x 6

else
divide x (choose 0 4)

choose

values & computations

U ..
C ..

h ::

>

le.

.-- | handler A
.-+ | with v handle c

et x—c,|op;(k;); — cj]j}

‘91:)Q2

U ..
C ..

h ::

handlers

A ::
C::

.-- | handler A
.-- | with v handle c

et x—c, |op;(k;); — cj]j}

‘Qljgz

v::=--- | handler
.-+ | with v handle c
h:=qretx—c,|op;(k;);— c;|

o
|

value types

A=-... ‘913Q2
C:i=--

computation types

value & computation typing

['Fv:A
I'Fc:C

I'Fh:Al2Z2=C

handler typing

I'Fh:A!'2=C

['Fhandlerh :A!'2X=>C

['Fuv:C,=>C, I'Fc:C,
['=with v handle c: C,

[Lx:Akc:C

T,(k; :unit — C); ~Cj :Q]j

p = {ret X c, 0P

with 4 handle (ret v)

c[v_/x]

with 7 handle (op;(c;);)
¢j[fun () — (with h handle c})/k;];

ki)i — C]\]‘f

(
pandler fret X c,\oP;
h =

ret (O

ret 0
= with goLeit handle (ret O @ret 1)

ret 0
= with goLeit handle (ret O @ret 1)
= with goLeft handle (ret 1 ¢ ret 0)

ret 0
= with goLeit handle (ret O @ret 1)
= with goLeft handle (ret 1 ¢ ret 0)

=ret 1

ret 0
= with goLeit handle (ret O @ret 1)
= with goLeft handle (ret 1 ¢ ret 0)

[Th _
=Ty |
(T
1:
Tg)Eéa
glob
al

h
1S
COrrTr
e
ct

h— foins
z; =fjrunit — C

op (T)" = c;[(fun () — T)V/k;];

— C,\Opj(kL)L
h=ret®

o:s: /X XV
L XV VXV
L VYV VYV Y
beepznobecp(zz) o p o Wy Wy Vg

= beep(z1 @ 29)

“amo V V V VYV

signature

G : 2 beep: 1 fail: O

z2®z=2
21®290=29®21
(21®22)D23=210(22®23)
beep(z1) ® beep(z2) = beep(z1 & 29)
fail() & fail() = fail()

eftect theory

D :

2

beep: 1

signature

fail: O

effect theory

for 2 ={®: 2,beep: 1}, we have:
dox —cin (c;1 ®co)
(doxhcincl)é(doxhcincz)

do x — c1 1n beep(cy)

beep(do x — c1 1n ¢9)

do x1 —c1 1n (do x9 < ¢c9 In ¢)

do xo —c9 In (do x1 <— c¢1 In ¢)

AN EFFECT SYSTEM FOR ALGEBRAIC EFFECTS AND HANDLERS

ANDREJ BAUER AND MATIJA PRETNAR

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
e-mail address: Andrej.Bauer@andrej.com

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
e-mail address: matija.pretnar@fmf.uni-lj.si

-

ABSTRACT. We present an effect system for core Eff, a simplified variant of Eff, which is
an ML-style programming language with first-class algebraic effects and handlers. We de-
fine an expressive effect system and prove safety of operational semantics with respect to it.
Then we give a domain-theoretic denotational semantics of core Eff, using Pitts’s theory
of minimal invariant relations, and prove it adequate. We use this fact to develop tools
for finding useful contextual equivalences, including an induction principle. To demon-
strate their usefulness, we use these tools to derive the usual equations for mutable state,
including a general commutativity law for computations using non-interfering references.
We have formalized the effect system, the operational semantics, and the safety theorem
in Twelf.

1. INTRODUCTION

An effect system supplements a traditional type system for a programming language with
information about which computational effects may, will, or will not happen when a piece of
code is executed. A well designed and solidly implemented effect system helps programmers
understand source code, find mistakes, as well as safely rearrange, optimize, and parallelize
code [11, 8]. As many before us (11, 24, 25, 7] we take on the task of striking just the right
balance between simplicity and expressiveness by devising an effect system for Eff [2], an
ML-style programming language with first-class algebraic effects [17, 15] and handlers [19].

Our effect system is descriptive in the sense that it provides information about pos-
sible computational effects but it does not prescribe them. In contrast, Haskell’s monads
prescribe the possible effects by wrapping types into computational monads. In the imple-
mentation we envision effect inference which never fails, although in some cases it may be
uninformative. Of course, typing errors are still errors.

An important feature of our effect system is non-monotonicity: it detects the fact that
a handler removes some effects. For instance, a piece of code which uses mutable state is
determined to actually be pure when wrapped by a handler that handles away lookups and
updates.

1998 ACM Subject Classification: D3.3, F3.2, F3.3.
Key words and phrases: algebraic effects, effect handlers, effect system.
A preliminary version of this work was presented at CALCO 2013, see [3].

LOGICAL METHODS © Andrej Bauer and Matija Pretnar
IN COMPUTER SCIENCE DOI:10.2168/LMCS-??? Creative Commons

1

AN EFFECT SYSTEM FOR ALGEBRAIC EFFECTS AND HANDLERS

ANDREJ BAUER AND MATIJA PRETNAR

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
e-mail address: Andrej.Bauer@andrej.com

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia i) J AL -
e-mail address: matija.pretnar@fmf.uni-lj.si T I W Adbnad s | o

Arah ARAANS TV AL AALAULL LA —a . o N Site to
e B : ' The situation 1s oppo
. ations.
e behavior of oper
es that describe th

o start with an equational theory for operatio

derive equivale}xllc
that of [19], where w |
. = bbreviate
handésrsdrespeci:;;e the technique for mutable state. Let h = state, and a
e demons .
let f = (with h handlec) in fe

as H|c, e]. Straightforward calculations give us the equivalences]
| H[(c#1ookup O (y-¢)); e] = ’H[c[e{y], 3
H[(.#update e’ (_.c)), €] Hlc, €]

/

POTRyWEAPPIIE types into computational monads. In the imple-
chtatlon we envision effect inference which never fails, although in some cases it may be
uninformative. Of course, typing errors are still errors.
An important feature of our effect system is non-monotonicity: it detects the fact that
a handler removes some effects. For instance, a piece of code which uses mutable state is
determined to actually be pure when wrapped by a handler that handles away lookups and
updates.

ns and require that the

1998 ACM Subject Classification: D3.3, F3.2, F3.3.
Key words and phrases: algebraic effects, effect handlers, effect system.
A preliminary version of this work was presented at CALCO 2013, see [3].

LOGICAL METHODS © Andrej Bauer and Matija Pretnar
IN COMPUTER SCIENCE DOI:10.2168/LMCS-??? Creative Commons

1

o [c] = with pickMax handle c

%max[do X —cIn (Cl EBCQ)]

ﬁ”max[(do X —cIn c_l) ®(do x — ¢ In cz)]

Fmax|do x1 — c1 in (do xg — cg in ¢)

T max :do xo —co 1In (do x1 < c1 1In c):

Hom[e] = with sumAll handle c

Hosum |dO x — ¢ in (c1 ©c2))

stum_[(do X —c1in c_l) ®(do x — c In cz)]

Fsum |d0 x1 — c1 in (do xg —cg in ¢)

T um :do xo —co 1In (do x1 < c1 1In c):

PART Il

LOCAL
FFFECT THEORIES

values & computations

U ..— " °°

C..—

h ::: o o o
handlers

value types

A=
C:=A12/&

computation types

[Th _
=Ty |
(T
1:
Tg)Eéa
glob
al

h
1S
COrrTr
e
ct

h h
[Tl — TZ](T;[ZTQ)ECSa

h respects &

I'FhA:Al2=C
h respects &

['Fhandlerh:A!2/&=C

['Fv:A
I['Fretv:A!2/&

['Fe1:A'X /& I'x:AFco:B!'2/&
[Fdox<—ciinco:B!X/&

'tc;:AlX|. op;:ki€eZX
I'Fop(c;); :A' X/ &

(T=THe& citAlX/E].

Tlci/zili =ars/e T'leilzil;

AN EXAMPLE

do x1 —c1 1n (do x9 — ¢c9 1In ¢)

do D e | B in (d() XS LT in C)

Algebraic Foundations for Effect-Dependent Optimisations

Ohad Kammar

Gordon D. Plotkin

Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh, Scotland

ohad.kammar@ed.ac.uk

Abstract

We present a general theory of Gifford-style type and effect anno-
tations, where effect annotations are sets of effects. Generality is
achieved by recourse to the theory of algebraic effects, a develop-
ment of Moggi’s monadic theory of computational effects that em-
phasises the operations causing the effects at hand and their equa-
tional theory. The key observation is that annotation effects can be
identified with operation symbols.

We develop an annotated version of Levy’s Call-by-Push-Value
language with a kind of computations for every effect set; it can
be thought of as a sequential, annotated intermediate language.
We develop a range of validated optimisations (i.e., equivalences),
generalising many existing ones and adding new ones. We classify
these optimisations as structural, algebraic, or abstract: structural
optimisations always hold; algebraic ones depend on the effect
theory at hand; and abstract ones depend on the global nature of
that theory (we give modularly-checkable sufficient conditions for
their validity).

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers; Optimization; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Logics of programs; F3.2 [Semantics of Pro-
gramming Languages]: Algebraic approaches to semantics; Deno-
tational semantics; Program analysis; F3.3 [Studies of Program
Constructs): Type structure

General Terms Languages, Theory.

Keywords Call-by-Push-Value, algebraic theory of effects, code
transformations, compiler optimisations, computational effects, de-
notational semantics, domain theory, inequational logic, relevant
and affine monads, sum and tensor, type and effect systems, uni-
versal algebra.

1. Introduction

In Gifford-style type and effect analysis [27], each term of a pro-
gramming language is assigned a type and an effect set. The type
describes the values the term may evaluate to; the effect set de-
scribes the effects the term may cause during its computation, such
as memory assignment, exception raising, or I/O.

For example, consider the following term M:

if true then x := 1 else x := deref(y)

[Copyright notice will appear here once "preprint’ option is removed.]

gdp@ed.ac.uk

It has unit type 1 as its sole purpose is to cause side effects;
it has effect set {update, lookup}, as it might cause memory
updates or look-ups. Type and effect systems commonly convey
this information via a type and effect judgement:

x:Loc,y:LocHM:1! {update, lookup}

The information gathered by such effect analyses can be used
to guarantee implementation correctness', to prove authenticity
properties [15], to aid resource management [44], or to optimise
code using transformations. We focus on the last of these. As an
example, purely functional code can be executed out of order:

X Mi; y+ Ma; N = ¥y Ma; x+ My; N

This reordering holds more generally, if the terms M; and M, have
non-interfering effects. Such transformations are commonly used in
optimising compilers. They are traditionally called optimisations,
even if neither side is always the more optimal.

In a sequence of papers, Benton et al. [4-8] prove soundness of
such optimisations for increasingly complex sets of effects. How-
ever, any change in the language requires a complete reformulation
of its semantics and so of the soundness proofs, even though the
essential reasons for the validity of the optimisations remain the
same. Thus, this approach is not robust, as small language changes
cause global theory changes.

A possible way to obtain robustness is to study effect systems
in general. One would hope for a modular approach, seeking to
isolate those parts of the theory that change under small language
changes, and then recombining them with the unchanging parts.
Such a theory may not only be important for compiler optimisations
in big, stable languages. It can also be used for effect-dependent
equational reasoning. This use may be especially helpful in the
case of small, domain-specific languages, as optimising compilers
are hardly ever designed for them and their diversity necessitates
proceeding modularly.

The only available general work on effect systems seems to
be that of Marino and Millstein [28]. They devise a methodology
to derive type and effect frameworks which they apply to a call-
by-value language with recursion and references; however, their
methodology does not account for effect-dependent optimisations.

Fortunately, Wadler and Thiemann [46, 47] had previously
made an important connection with the monadic approach to
computational effects. They translated Jjudgements of the form
'~ M: Alein aregion analysis calculus to judgements of the
form I = M" : T. A in a multi-monadic calculus. They gave the
latter calculus an operational semantics, and conjectured the exis-
tence of a corresponding general monadic denotational semantics
in which 7. would denote a monad corresponding to the effects in
€, and in which the partial order of effect sets and inclusions would

_
'E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links 0.5, 2009.
http://groups.inf.ed.ac.uk/links .

2011/11/16

COMM
21 P29 =290D21

>

ﬂm‘

A T B A TNREARERR
-
/. ?M.w 3 o
-\ /W/ NJM.N/ ﬂ-rJ/ ’
N DR 0 A ,..;wfa \
o Y

e

\ i-l.a-lin;oalﬁ‘...ﬂnwvﬂa.’
mﬁ%ﬂwﬂf/ sEattaREaE

SasmeapyEtATBIEE) Ay

)
s SLamenmd
]

S -

1
‘

SAAAAANL

1B

ﬁéﬁﬁhﬁﬁﬁﬁ*hhﬁ*ﬁ&&&

T

1nt — un

1d

ylie

0.8
ﬂ@/ﬂ&
A&l

b o ' =

1
B
FJ,\

ST &

e s e W

’ ﬂvﬂﬂwg w 1
: |1|oll‘;mtu’“‘_ﬂ1lna|-»’./
e

e

e awm) WRRY

f \
A pawatiee aaal

a »
Ayt
\

o
N st lamumend
. wp—
\ —
f \
Tt Géﬂm’l/’!ﬂﬂ

A

SAR AR ALLA

¥

SALAAAAAALAAL AL L 4 00

yield: int — unit

ORDER
yield,(yield,(z)) = yield, (yield,(z))

yield: int — unit

ORDER
yield,(yield,(z)) = yield, (yield,(z))

SUMYIELDED
unit!{yield}/{ORDER} = int!@/@

YIELDALL
handler {

ki1®ko— kl();kZ()
ret x— yield, ()

YIELDALL
handler {

ki1®ko— kl();kZ()
ret x— yield, ()
}

int{e}/® = unit!{yield}/d

YIELDALL
handler {

ki1®ko— kl();kZ()
ret x— yield, ()
}

int{e}/® = unit!{yield}/d
int!{®}/{COMM} = unit!{yield}/{ORDER}

2 unit!{yield}/{ORDER} = int!@/g
BT

\M. -~

3d s ’- - -
OMM} = unit!{yield}/{ORDER}

- A -

5

— ._‘

b
-

in this talk

eput effect theories in types

*Use equations to rewrite programs
eprove handlers respect equations

in the paper

egeneral operation signatures
edenotational semantics
eparameterized logic
esoundness theorems

in the next paper
*QuickCheck-like tool
emore examples
ecompiler optimizations?

