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effect Put: int -> unit 
effect Get: unit -> int 

let rec loop n = 
  if n = 0 then () else 
    perform (Put (perform (Get ()) + 1)); 
    loop (n - 1) 

let state_handler = handler 
  | effect (Put s') k -> (fun _ -> k () s') 
  | effect (Get ()) k -> (fun s -> k s s) 
  | _ -> (fun s -> s) 

let main n = 
  (with state_handler handle loop n) 0





“Eff brings home the bacon, 
but it is too slow 

because it is interpreted.”
— Matija Pretnar, 21st July 2021
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effect Put: int -> unit 
effect Get: unit -> int

type ‘a computation = 
  | Return of ‘a 
  | Put of int * (unit -> ‘a computation) 
  | Get of unit * (int -> ‘a computation) 

let rec (>>=) comp k = 
  match comp with 
  | Return x -> k x 
  | Put (s, k’) -> 
      Put (s, fun _ -> k’ () >>= k) 
  | Get (_, k’) -> 
      Get ((), fun y -> k’ y >>= k)



let rec loop n = 
  if n = 0 then () else 
    perform (Put (perform (Get ()) + 1)); 
    loop (n - 1)

let rec loop n = 
  equal n >>= fun f -> 
  f 0     >>= fun b -> 
  if b then return () else 
    get ()  >>= fun s  -> 
    plus s  >>= fun g  -> 
    g 1     >>= fun s' -> 
    put s'  >>= fun _  -> 
    minus n >>= fun h  -> 
    h 1     >>= fun n' -> 
    loop n'

let equal = 
  fun x ->  
    return (fun y -> 
      return (x = y))



effect Put: int -> unit 
effect Get: unit -> int

type (‘a, ‘b) handler_clauses = { 
  return : ‘a -> ‘b; 
  put : int -> (unit -> ‘b) -> ‘b; 
  get : unit -> (int -> ‘b) -> ‘b 
} 
   
let rec handle hcls = 
  function 
  | Return x -> hcls.return x 
  | Put (x, k) -> 
     cl.put x (fun y -> handle hcls (k y)) 
  | Get (x, k) -> 
     cl.get x (fun y -> handle hcls (k y))



let state_handler = handler 
  | effect (Put s') k -> (fun _ -> k () s') 
  | effect (Get ()) k -> (fun s -> k s s) 
  | _ -> (fun s -> s)

let state_handler = handler { 
  put = (fun s' k -> return 
    (fun _ -> k () >>= fun f -> f s')); 
  get = (fun () k -> return 
    (fun s -> k s >>= fun f -> f s)); 
  return = (fun _ -> return 
    (fun s -> return s)); 
}



let main n = 
  (with state_handler handle loop n) 0

let main n = 
  state_handler (loop n) >>= (fun f -> f 0)
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let rec loop n = 
  equal n >>= fun f -> 
  f 0     >>= fun b -> 
  if b then return () else 
    get ()  >>= fun s  -> 
    plus s  >>= fun g  -> 
    g 1     >>= fun s' -> 
    put s'  >>= fun _  -> 
    minus n >>= fun h  -> 
    h 1     >>= fun n' -> 
    loop n'

let rec loop n = 
  let f = (=) n in 
  let b = f 0 in 
  if b then return () else 
    get () >>= fun s  -> 
    let g = (+) s in 
    let s' = g 1 in 
    put s' >>= fun _  -> 
    let h = (-) n in 
    let n' = h 1 in 
    loop n'

🧢 🎓
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effect Put: int -> unit 
effect Get: unit -> int 

let rec loop n = 
  if n = 0 then () else 
    perform (Put (perform (Get ()) + 1)); 
    loop (n - 1) 

let state_handler = handler 
  | effect (Put s') k -> (fun _ -> k () s') 
  | effect (Get ()) k -> (fun s -> k s s) 
  | _ -> (fun s -> s) 

let main n = 
  (with state_handler handle loop n) 0

let main n =  
  let rec state_handler_loop m s = 
    if m = 0 then s  
             else state_handler_loop (m - 1) (s + 1) 
  in 
  state_handler_loop n 0
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Fig. 14. Relative run-times of Loops example

let rec (>>=) (c : �a computation) (f : �a -> �b computation) : �b computation =

match c with
| Return x -> f x| Call (op , x, k) -> Call (op, x, (fun y -> (k y) >>= f))

8 EVALUATION
We evaluate the e�ectiveness of our optimizing compiler for E�� on a number of benchmarks. First, we compare our

di�erent compilation schemes with hand-wri�en OC��� code. Then, we measure our compiler’s performance against

other OC���-based implementations of algebraic e�ects and handlers. All benchmarks were run on a MacBook Pro

with an 2.5 GHz Intel Core I7 processor and 16 GB 1600 MHz DDR3 RAM running Mac OS 10.12.3.
8.1 E�� versus OC���
Our first evaluation, in Fig. 14, considers four di�erent variations on the looping program from Section 2: 1) Pure

is version without side-e�ects, 2) Latent contains an operation that is never called during the execution of the

benchmark, 3) Incr calls a single increment operation that increments an implicit state, 4) is the version of Section 2

that increments the implicit state with the Get and Put operations. We compile these programs in four di�erent ways:

1) basic compilation mode without any optimization (Basic), 2) purity-aware compilation (Pure), 3) source-to-source

optimizations (Opt), 4) the combination of the previous two. Finally, we compare these di�erent versions against

hand-wri�en (Native) OC��� code: 1) a pure loop, 2) a latent OC��� exception, 3) a reference cell increment, and 4) a

reference cell read followed by a write. The programs were compiled with version 4.02.2 of the OC��� compiler.

Figure 14 shows the time relative to the Basic version for running each of the 20 programs for 10,000 iterations. The

results show a substantial gap between the basic compilation scheme and the hand-wri�en OC���, in the range of

25⇥–50⇥. The source-to-source transformations and purity-aware code generation each have individually varying

success in reducing the gap to a smaller, but still significant level. It is only when the two optimizations are combined

that we obtain performance that is competitive with the hand-wri�en versions (1⇥-1.5⇥). In particular, the combined

optimizations succeed in eliminating all trace of the handlers and free monad from the generated OC��� code.Manuscript submi�ed to ACM
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EXEFF SYNTAX

E�icient Compilation of Algebraic E�ect Handlers 24:7

value E ::= G | unit | fun (G : T ) 7! 2 | ⌘ | E B W
handler ⌘ ::= {return (G : T ) 7! 2A , Op1 G : 7! 2Op1 , . . . , Op= G : 7! 2Op= }

computation 2 ::= return E | Op E (~ : T .2) | do G  21; 22 | handle 2 with E
| E1 E2 | let G = E in 2 | let rec 5 G = 21 in 22 | 2 B W

value type T ::= Unit | T ! C | C1 ) C2
computation type C ::= T ! �

dirt � ::= ; | {Op} [ �
coercion type c ::= T1 6 T2 | �1 6 �2 | C1 6 C2

coercion W ::= hUniti | W1 ! W2 | W1 ) W2 | ;� | {Op} [ W | W1 ! W2

Fig. 2. E�E�� Syntax

3 EXEFF OPTIMIZATIONS
This section presents our optimizations of the explicitly-typed core language E�E��. The opti-
mizations take the form of source-to-source transformations; they aim to statically reduce the
application of handlers to algebraic e�ect operations. Before we explain these transformations
(Sec. 3.2) and the complementary function specialization (Sec. 3.3), we briefly summarize the E�E��
language of Karachalias et al. [2020] (Sec. 3.1).

3.1 The E�E�� Language
Figure 2 presents the syntax of E�E��.1 E�E�� is a fine-grained call-by-value calculus that segregates
terms into values E and computations 2 . Values comprise, as usual, variables, unit values, and
function abstractions, but also handlers ⌘ and type casts E B W . Handlers ⌘ are essentially records
with fields that explain how to interpret particular operations (the e�ect clauses) and how to
interpret the final result of a computation (the return clause). In the remainder of the paper we o�en
abbreviate sets of handler clauses {Op1 G : 7! 2Op1 , . . . , Op= G : 7! 2Op= } as [OpG : 7! 2Op]Op2O ,
and write O to denote the set of handled operations {Op1, . . . , Op=}. We assume a given set of
operations Op, including operations such as Get or Put. A type cast E B W changes the type of a
value E according with coercion W (see below).

Computations include operations calls Op E (~ : T .2), sequencing (do G  21; 22), operation
handling (handle 2 with E), term application (E1 E2), non-recursive let-bindings (let G = E in 2),
recursive let-bindings (let rec 5 G = 21 in 22), and type casting 2 B W . Form return E li�s a pure
value into a computation,

Similarly to terms, we distinguish between two kinds of types: value types T and computation
types C. The former classify values, while the la�er classify computations. There are three forms
of value types: the unit type Unit, function/arrow types T ! C, and handler types C1 ) C2.
Computation types C combine a value type and a dirt (T ! �). A dirt � overapproximates the set of
operations that a computation may call; it can be either the empty set ; or non-empty set {Op}[�.
Subtyping coercions—denoted by W—allow us to change the type of values and computations

via explicit casting (B). Hence, coercions are classified by the subtyping relation they witness,
captured by coercion types c . Reflexivity for ground value types hUniti and subtyping between
the empty dirt and any other ;� form the base cases. The remaining forms are simple congruences:
W1 ! W2 for function types, W1 ) W2 for handler types, {Op} [W for non-empty dirt lists, and W1 ! W2
1In order to focus on the essence of the optimizations, we have omi�ed the polymorphic fragment of the language from
the paper.

J. ACM, Vol. 37, No. 4, Article 24. Publication date: August 2018.



NOEFF SYNTAX

E�icient Compilation of Algebraic E�ect Handlers 24:13

term t ::= G | unit | fun G : � 7! t | t1 t2 | t B W | return t | ⌘ | let G = t1 in t2
| let rec 5 G = t1 in t2 | Op t1 (~ : ⌫.t2) | do G  t1; t2 | handle t2 with t⌘

handler ⌘ ::= {return (G : �) 7! tA , [OpG : 7! tOp]Op2O}
type �,⌫ ::= Unit | �! � | �) ⌫ | Comp �

coercion type c ::= � 6 ⌫
coercion W ::= hUniti | W1 ! W2 | W1 ) W2 | comp W | return W | . . .

Fig. 6. N�E�� Syntax

else if Decide then go (n-1) else go (n-2)

in let rec go1 n1 =

if n1 = 0 then Fail

else handle go1 (n1 -1) with
| effect (Fail _) _ -> go1 (n1 -2)

in go1 m

Note that the specialised function go1 still contains the second handler, which is now applied to a
recursive call. Hence, we can continue by specialising this handled call to obtain

let rec go n =

if n = 0 then perform (Fail ())

else if perform (Decide ()) then go (n-1) else go (n-2)

in let rec go1 n1 =

if n1 = 0 then perform (Fail ())

else let rec go2 n2 =

if n2 = 0 then go1 (n1 -2)

else handle (handle go1 (n2 -1) with
| effect (Fail _) _ -> go1 (n2 -2)) with

| effect (Fail _) _ -> go1 (n1 -2)

in go2 (n1 -1)

in go1 m

Now the resulting code contains two nested handlers around a recursive call. However, the inner
of those two handlers is distinct from any of the previous handlers because it refers to the new
variable n2. Hence, we can specialise again and again without end. This is non-termination is
obviously undesirable and so we currently enforce termination by not re-specialising any already
specialised function. We leave more sophisticated solutions, e.g., abstracting over the variation
among the specialised handlers, to future work.

4 NOEFF OPTIMIZATIONS
This section presents the optimizations that happen in the backend of the compiler, when the
E�E�� core language has been elaborated into N�E��.

4.1 From E�E�� to N�E��
4.1.1 The N�E�� Language. The N�E�� language is an intermediary between E�E�� and general-
purpose languages like OC��� without support for algebraic e�ects. Its syntax is given in Figure 6.
Though the syntax of N�E�� is very close to that of E�E��, there are a few notable di�erences.

First, whereas E�E�� distinguishes between value and computation terms and types, N�E�� has
only one sort for terms and one for types. Second, and more importantly, while E�E�� has a

J. ACM, Vol. 37, No. 4, Article 24. Publication date: August 2018.



TRANSLATING EXEFF TO NOEFF

24:14

W : � 6 �

t B return W { return t
E����R���C�

W : � 6 �

t B W { t
E����C��T���

do G  (return t1); t2 { t2 [t1/G]
D��R��

let G = t1 in t2 { t2 [t1/G]
L��V��

Fig. 7. N�E�� Optimizations

type-and-e�ect system that keeps track of which operations a computation may call, N�E�� only
keeps track of whether a term may call operations or not. This manifests itself in the lack of dirts:
E�E��’s fine-grained computation types (T ! �) are replaced by N�E��’s computation types that
do not mention dirts (Comp �), and computation coercions (W1 ! W2) are similarly replaced by the
coarser (comp W ). Similarly, coercions that cast pure computations into impure ones are replaced
by the e�ect-agnostic form (return W ).

Finally, N�E�� features a few more coercion forms that facilitate the purity-aware translation of
E�E��, which are out of the scope of this paper (denoted as . . . in Figure 6). Interested readers can
find the full definition of N�E�� in the work of Karachalias et al. [2020].

4.1.2 Purity-aware Translation of E�E�� to N�E��. The key idea behind the design of N�E�� and
the translation scheme of Karachalias et al. [2020, Section 7.4] that transforms E�E�� programs
into N�E�� programs is the di�erentiation between pure and impure computations. This is nicely
summarised in the more nuanced compilation of computation types that, conceptually, takes the
following form (rephrased in terms of the translation function J·K instead of the original inductive
rules):

JT ! �K =
(
JTK , if � = ;
Comp JTK , if � < ;

This distinction between pure and impure types also applies to the translation of the other well-
typed terms (values, computations, coercion types, and coercions). For example, do-bindings are
translated as follows:

J� ` (do G  21; 22) : ⌫ ! �K =
(
let G = J21K in J22K , if � = ;
do G  J21K; J22K , if � < ;

If the do-computation is pure then it can be translated e�iciently into a let-binding, otherwise,
the translation falls back to the default behaviour and preserves the (more expensive) do-binding.

The remaining rules of Karachalias et al. [2020, Section 7.4.3] work in a similar fashion, generating
more e�icient N�E�� code when computations are known to be pure and falling back to default
translations for e�ectful computations.

4.2 Optimizations
Figure 7 presents the rewrite rules that seize the new optimization opportunities that arise a�er
E�E�� is translated into N�E��.
The first pair of rules (E����R���C� and E����C��T���) again eliminate redundant coercions,

while the second pair of rules (D��R�� and L��V��) (in practice selectively) V-reduce do-bindings
and let-bindings.
At first glance it might seem that these optimizations have no e�ect a�er similar ones have

already been performed on the E�E�� program. Yet, this is not true for several reasons. Firstly,
by coalescing values and computations in N�E��, we can substitute variables for function calls

J. ACM, Vol. 37, No. 4, Article 24. Publication date: August 2018.
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t B return W { return t
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do G  (return t1); t2 { t2 [t1/G]
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let G = t1 in t2 { t2 [t1/G]
L��V��

Fig. 7. N�E�� Optimizations

type-and-e�ect system that keeps track of which operations a computation may call, N�E�� only
keeps track of whether a term may call operations or not. This manifests itself in the lack of dirts:
E�E��’s fine-grained computation types (T ! �) are replaced by N�E��’s computation types that
do not mention dirts (Comp �), and computation coercions (W1 ! W2) are similarly replaced by the
coarser (comp W ). Similarly, coercions that cast pure computations into impure ones are replaced
by the e�ect-agnostic form (return W ).

Finally, N�E�� features a few more coercion forms that facilitate the purity-aware translation of
E�E��, which are out of the scope of this paper (denoted as . . . in Figure 6). Interested readers can
find the full definition of N�E�� in the work of Karachalias et al. [2020].

4.1.2 Purity-aware Translation of E�E�� to N�E��. The key idea behind the design of N�E�� and
the translation scheme of Karachalias et al. [2020, Section 7.4] that transforms E�E�� programs
into N�E�� programs is the di�erentiation between pure and impure computations. This is nicely
summarised in the more nuanced compilation of computation types that, conceptually, takes the
following form (rephrased in terms of the translation function J·K instead of the original inductive
rules):

JT ! �K =
(
JTK , if � = ;
Comp JTK , if � < ;

This distinction between pure and impure types also applies to the translation of the other well-
typed terms (values, computations, coercion types, and coercions). For example, do-bindings are
translated as follows:

J� ` (do G  21; 22) : ⌫ ! �K =
(
let G = J21K in J22K , if � = ;
do G  J21K; J22K , if � < ;

If the do-computation is pure then it can be translated e�iciently into a let-binding, otherwise,
the translation falls back to the default behaviour and preserves the (more expensive) do-binding.

The remaining rules of Karachalias et al. [2020, Section 7.4.3] work in a similar fashion, generating
more e�icient N�E�� code when computations are known to be pure and falling back to default
translations for e�ectful computations.

4.2 Optimizations
Figure 7 presents the rewrite rules that seize the new optimization opportunities that arise a�er
E�E�� is translated into N�E��.
The first pair of rules (E����R���C� and E����C��T���) again eliminate redundant coercions,

while the second pair of rules (D��R�� and L��V��) (in practice selectively) V-reduce do-bindings
and let-bindings.
At first glance it might seem that these optimizations have no e�ect a�er similar ones have

already been performed on the E�E�� program. Yet, this is not true for several reasons. Firstly,
by coalescing values and computations in N�E��, we can substitute variables for function calls
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term t ::= G | unit | fun G : � 7! t | t1 t2 | t B W | return t | ⌘ | let G = t1 in t2
| let rec 5 G = t1 in t2 | Op t1 (~ : ⌫.t2) | do G  t1; t2 | handle t2 with t⌘

handler ⌘ ::= {return (G : �) 7! tA , [OpG : 7! tOp]Op2O}
type �,⌫ ::= Unit | �! � | �) ⌫ | Comp �

coercion type c ::= � 6 ⌫
coercion W ::= hUniti | W1 ! W2 | W1 ) W2 | comp W | return W | . . .

Fig. 6. N�E�� Syntax

do not mention dirts (Comp �), and computation coercions (W1 ! W2) are similarly replaced by the
coarser (comp W ). Similarly, coercions that cast pure computations into impure ones are replaced
by the e�ect-agnostic form (return W ).

Finally, N�E�� features a few more coercion forms that facilitate the purity-aware translation of
E�E��, which are out of the scope of this paper (denoted as . . . in Figure 6). Interested readers can
find the full definition of N�E�� in the work of Karachalias et al. [2020].

4.1.2 Purity-aware Translation of E�E�� to N�E��. The key idea behind the design of N�E�� and
the translation scheme of Karachalias et al. [2020, Section 7.4] that transforms E�E�� programs
into N�E�� programs is the di�erentiation between pure and impure computations. This is nicely
summarised in the more nuanced compilation of computation types that, conceptually, takes the
following form (rephrased in terms of the translation function J·K instead of the original inductive
rules):

JT ! �K =
(
JTK , if � = ;
Comp JTK , if � < ;

This distinction between pure and impure types also applies to the translation of the other well-
typed terms (values, computations, coercion types, and coercions). For example, do-bindings are
translated as follows:

J� ` (do G  21; 22) : ⌫ ! �K =
(
let G = J21K in J22K , if � = ;
do G  J21K; J22K , if � < ;

If the do-computation is pure then it can be translated e�iciently into a let-binding, otherwise,
the translation falls back to the default behaviour and preserves the (more expensive) do-binding.

JW1 ! W2K =

8>>><
>>>:

JW1K , if W2 : ;  ;
return JW1K , if W2 : ;  �

comp JW1K , if W2 : �  �0

The remaining rules of Karachalias et al. [2020, Section 7.4.3] work in a similar fashion, generating
more e�icient N�E�� code when computations are known to be pure and falling back to default
translations for e�ectful computations.

4.2 Optimizations
Figure 7 presents the rewrite rules that seize the new optimization opportunities that arise a�er
E�E�� is translated into N�E��.
The first pair of rules (E����R���C� and E����C��T���) again eliminate redundant coercions,

while the second pair of rules (D��R�� and L��V��) (in practice selectively) V-reduce do-bindings
and let-bindings.

J. ACM, Vol. 37, No. 4, Article 24. Publication date: August 2018.
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EXEFF COERCION OPTIMIZATIONS24:8

W : T 6 T

E B W { E
E����C��V��

W : C 6 C

2 B W { 2
E����C��C���

(Op E (~ : T .2)) B W { Op E (~ : T .(2 B W))
P����C��O�

21 : T
(do G  21; 22) B (W1 ! W2) { do G  (21 B hT i ! W2); (22 B W1 ! W2)

P����C��D�

(E1 B W1 ! W2) E2 { (E1 (E2 B W1)) B W2
P����C��A��

handle 2 with (E B W1 ) W2) { (handle (2 B W1) with E) B W2
P����C��H�����

Fig. 3. E�E�� Optimizations: Push Rules and Elimination of Casts

for computation types. Using the above congruences we can construct a reflexive coercion for any
type T , which we denote as hT i.

3.2 E�E�� Source-to-Source Transformations
This section presents the E�E�� source-to-source transformations at the heart of our optimization
approach. These transformations leverage the information of the type-and-e�ect system as well as
the syntactic structure of terms to perform a number of optimisations that aim to remove handlers.
We denote these transformations in terms of rewrite rules of the form E1 { E2 for values, and
21 { 22 for computations.

We have not formally proven the correctness of the rewrite rules, though we conjecture that they
are both type-preserving and semantics-preserving as we have tested both of these properties on a
test suite. We have naturally checked semantic preservation by verifying whether the same output
is produced with and without the optimizations. More interestingly, the implementation uses
assertions to ensure type preservation and employs smart constructors to type-check transformed
E�E�� programs. [TODO: explain smart constructors]

We have classified the rules in three groups based on what they do: the cast rules, the normal-
ization and V-rules, and the handler reduction rules. The last group contains the handler-specific
optimizations, while the other two groups are mainly enablers: they simplify and re-arrange the
program code to create opportunities for the handler reduction rules.

3.2.1 Cast Rules. The first set of rewrite rules deals with coercions and is given in Figure 3. The
rules aim to expose rewrite opportunities for other rules by moving casts out of the way, by
distributing them into subterms and possibly eliminating them altogether. We prefer this approach
of many collaborating small rules over building additional complexity (for looking through casts)
into a smaller set of rules.

The first two rules, E����C��V�� and E����C��C���, eliminate redundant casts on expressions
and computations. By redundant we mean casts that do not alter the type of the value or compu-
tation. The other rules are so-called push rules, and they come directly from E�E��’s operational
semantics [Karachalias et al. 2020, Appendix B]. Their purpose is to distribute casts that block
redexes into the subterms, thereby enabling reduction.

J. ACM, Vol. 37, No. 4, Article 24. Publication date: August 2018.



EXEFF β-REDUCTIONS

E�icient Compilation of Algebraic E�ect Handlers 24:9

(fun (G : T ) 7! 2) E { 2 [E/G]
A���F��

let G = E in 2 { 2 [E/G]
L��V��
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Fig. 4. E�E�� Optimizations: Normalization and V-Rules
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Fig. 5. E�E�� Optimizations: Handler Reduction Rules

3.2.2 Normalization and V-Rules. The second set of rewrite rules, given in Figure 4, focuses on the
simplifying and normalizing the structure of the program to expose opportunities for eliminating
handlers.

The first four (A���F��, L��V��, D��R��, and D��O�) correspond to E�E��’s V-rules and partially
evaluate computations. To avoid code blow-up or increased runtime, the substitution 2 [E/G] is
performed selectively, for example when E is atomic or G appears at most once in 2 . The last rule
reorders le�-nested nested do-computations, utilizing the fact that do is associative, in order to
normalize them to right-nested form. There is a clear synergy between rules D��O� and D��D�:
an operation that is buried under nested do-computations can be brought to the surface via those
two rules, so that it can potentially be reduced by a surrounding handler.
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Example 3.1. The set of handler reduction rules does not feature the following rule for return
that is the static counterpart to the corresponding case in the operational semantics.

⌘ = {return G 7! 2A , [OpG : 7! 2Op]Op2O}

handle ((return E) B (W1 ! W 01) B . . . B (W= ! W 0=)) with ⌘ { 2A [(E B W1 B . . . B W=)/G]
W����R��

The reason why this rule is not included is that it is not needed. Indeed, it can be derived from the
other rules. Take a computation handle (return E B W ! ;�1 ) with ⌘ where ;�1 is a coercion that
suitably increases the pure dirt of the returned value to one expected by the handler ⌘ : T1 ! �1 )
T2 ! �2. Since return E is pure, it is also pure relative to ⌘, so we can employ W����P��� and
D��R�� to get

handle (return E B W ! ;�1 ) with ⌘ { doG  (return E B W ! ;�2 ); 2A { 2A [(E B W)/G]

A case with multiple coercions around return E proceeds similarly.

Example 3.2. A similar derived case is that of handling a bind do ~  21; 22 where 21 is pure
relative to a handler ⌘. If we employW����D�, we get the reduction

handle (do G  21; 22) with ⌘ { handle 21 with ⌘
0

where ⌘0 is the same as ⌘ except for the return clause. Since 21 was pure relative to ⌘, it is also Take
a computation handle (return E B W ! ;�1 ) with ⌘ where ;�1 is a coercion that suitably increases
the pure dirt of the returned value to one expected by the handler ⌘ : T1 ! �1 ) T2 ! �2. Since
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W : � 6 �

t B return W { return t
E����R���C�

W : � 6 �

t B W { t
E����C��T���

do G  (return t1); t2 { t2 [t1/G]
D��R��

let G = t1 in t2 { t2 [t1/G]
L��V��

Fig. 7. N�E�� Optimizations

type-and-e�ect system that keeps track of which operations a computation may call, N�E�� only
keeps track of whether a term may call operations or not. This manifests itself in the lack of dirts:
E�E��’s fine-grained computation types (T ! �) are replaced by N�E��’s computation types that
do not mention dirts (Comp �), and computation coercions (W1 ! W2) are similarly replaced by the
coarser (comp W ). Similarly, coercions that cast pure computations into impure ones are replaced
by the e�ect-agnostic form (return W ).

Finally, N�E�� features a few more coercion forms that facilitate the purity-aware translation of
E�E��, which are out of the scope of this paper (denoted as . . . in Figure 6). Interested readers can
find the full definition of N�E�� in the work of Karachalias et al. [2020].

4.1.2 Purity-aware Translation of E�E�� to N�E��. The key idea behind the design of N�E�� and
the translation scheme of Karachalias et al. [2020, Section 7.4] that transforms E�E�� programs
into N�E�� programs is the di�erentiation between pure and impure computations. This is nicely
summarised in the more nuanced compilation of computation types that, conceptually, takes the
following form (rephrased in terms of the translation function J·K instead of the original inductive
rules):

JT ! �K =
(
JTK , if � = ;
Comp JTK , if � < ;

This distinction between pure and impure types also applies to the translation of the other well-
typed terms (values, computations, coercion types, and coercions). For example, do-bindings are
translated as follows:

J� ` (do G  21; 22) : ⌫ ! �K =
(
let G = J21K in J22K , if � = ;
do G  J21K; J22K , if � < ;

If the do-computation is pure then it can be translated e�iciently into a let-binding, otherwise,
the translation falls back to the default behaviour and preserves the (more expensive) do-binding.

The remaining rules of Karachalias et al. [2020, Section 7.4.3] work in a similar fashion, generating
more e�icient N�E�� code when computations are known to be pure and falling back to default
translations for e�ectful computations.

4.2 Optimizations
Figure 7 presents the rewrite rules that seize the new optimization opportunities that arise a�er
E�E�� is translated into N�E��.
The first pair of rules (E����R���C� and E����C��T���) again eliminate redundant coercions,

while the second pair of rules (D��R�� and L��V��) (in practice selectively) V-reduce do-bindings
and let-bindings.
At first glance it might seem that these optimizations have no e�ect a�er similar ones have

already been performed on the E�E�� program. Yet, this is not true for several reasons. Firstly,
by coalescing values and computations in N�E��, we can substitute variables for function calls
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return E is pure, it is also pure relative to ⌘, so we can employW����P��� and D��R�� to get

handle (return E B W ! ;�1 ) with ⌘ { doG  (return E B W ! ;�2 ); 2A { 2A [(E B W)/G]

A case with multiple coercions around return E proceeds similarly.

3.3 Function Specialisation
The rewrite rules above deal with most computations of the form (handle 2 with ⌘) where
⌘ is a handler expression, either dropping the handler altogether or pushing it down in the
subcomputations. However, one important case is not dealt with: the case where 2 is of the form
5 E with 5 the name of a user-defined recursive function.2

Consider this small example of the above situation:

let rec go n = go (perform (Next n)) in
handle (go 0) with
| x -> x

| effect (Next n) k -> if n > 100 then n else k (n * n + 1)

The non-terminating recursive function go seems to diverge. Yet, with the provided handler, its
argument steadily increases and evaluation eventually terminates when the argument exceeds 100.
In order to optimise this situation, we create a specialised copy of the function that has the

handler pushed into its body. In other words, for any recursive definition let rec 5 G = 2 5 in 2 ,
we perform the following general rewrite inside 2 :

handle 5 E with ⌘ { let rec 5 0 G = handle 2 5 with ⌘ in 5 0 E

The expectation is that, by exposing the handler to the body of the function (2 5 ), further optimiza-
tions succeed in eliminating the explicit handler. A critical step involved in the post-processing is to
“tie the knot”: a�er several rewrite steps in 2 5 , the handler is applied to the (original) recursive call,
so we have a term of the form handle 5 E 0 with ⌘, which we can replace by 5 0 E 0. This eliminates
the handler entirely and turns the original example into

let rec go n = ... in
let rec go � n = if n > 100 then n else go � (n * n + 1) in
go � 0

Generalization to Varying Return Clauses. The above basic specialisation strategy only works
when the return clause of the handler has not changed in the recursive call. Yet, that is o�en not
the case. Take for instance the following example.

let rec range n =

match n with
| 0 -> []

| _ -> perform (Fetch ()) :: range (n - 1)

in
handle (range 5) with
| x -> x

| effect (Fetch _) k -> k 42

The function range creates a list of given length, filling it with elements obtained by the Fetch

operation. To keep the example small we use a handler that always yields the value 42.

2If 5 is a function parameter of a higher-order function, we don’t do anything.
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A case with multiple coercions around return E proceeds similarly.

3.3 Function Specialisation
The rewrite rules above deal with most computations of the form (handle 2 with ⌘) where
⌘ is a handler expression, either dropping the handler altogether or pushing it down in the
subcomputations. However, one important case is not dealt with: the case where 2 is of the form
5 E with 5 the name of a user-defined recursive function.2

Consider this small example of the above situation:

let rec go n = go (perform (Next n)) in
handle (go 0) with
| x -> x

| effect (Next n) k -> if n > 100 then n else k (n * n + 1)

The non-terminating recursive function go seems to diverge. Yet, with the provided handler, its
argument steadily increases and evaluation eventually terminates when the argument exceeds 100.
In order to optimise this situation, we create a specialised copy of the function that has the

handler pushed into its body. In other words, for any recursive definition let rec 5 G = 2 5 in 2 ,
we perform the following general rewrite inside 2 :

handle 5 E with ⌘ { let rec 5 0 G = handle 2 5 with ⌘ in 5 0 E

The expectation is that, by exposing the handler to the body of the function (2 5 ), further optimiza-
tions succeed in eliminating the explicit handler. A critical step involved in the post-processing is to
“tie the knot”: a�er several rewrite steps in 2 5 , the handler is applied to the (original) recursive call,
so we have a term of the form handle 5 E 0 with ⌘, which we can replace by 5 0 E 0. This eliminates
the handler entirely and turns the original example into

let rec go n = ... in
let rec go � n = if n > 100 then n else go � (n * n + 1) in
go � 0

Generalization to Varying Return Clauses. The above basic specialisation strategy only works
when the return clause of the handler has not changed in the recursive call. Yet, that is o�en not
the case. Take for instance the following example.

let rec range n =

match n with
| 0 -> []

| _ -> perform (Fetch ()) :: range (n - 1)

in
handle (range 5) with
| x -> x

| effect (Fetch _) k -> k 42

The function range creates a list of given length, filling it with elements obtained by the Fetch

operation. To keep the example small we use a handler that always yields the value 42.

2If 5 is a function parameter of a higher-order function, we don’t do anything.
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so we have a term of the form handle 5 E 0 with ⌘, which we can replace by 5 0 E 0. This eliminates
the handler entirely and turns the original example into

let rec go n = ... in
let rec go � n = if n > 100 then n else go � (n * n + 1) in
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Generalization to Varying Return Clauses. The above basic specialisation strategy only works
when the return clause of the handler has not changed in the recursive call. Yet, that is o�en not
the case. Take for instance the following example.

let rec range n =

match n with
| 0 -> []

| _ -> perform (Fetch ()) :: range (n - 1)

in
handle (range 5) with
| x -> x

| effect (Fetch _) k -> k 42

The function range creates a list of given length, filling it with elements obtained by the Fetch

operation. To keep the example small we use a handler that always yields the value 42.

2If 5 is a function parameter of a higher-order function, we don’t do anything.
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In all the rules below, let ⌘ = {return G 7! 2A , [OpG : 7! 2Op]Op2O}handle (let G = E in 2) with ⌘ { let G = E in (handle 2 with ⌘)
W����L��V��handle (let rec 5 G = 21 in 22) with ⌘ { let rec 5 G = 21 in (handle 22 with ⌘)

W����L��R��
Op 2 Ohandle (Op E (~ : T .2)) with ⌘ { 2Op [E/G, (fun (~ : T ) 7! handle 2 with ⌘)/:]

W����H�������O�
Op 8 Ohandle (Op E (~ : T .2)) with ⌘ { Op E (~ : T .handle 2 with ⌘) W����U���������O�⌘ : T8 ! �8 ) T> ! �> 2 : T ! � � \ O = ;

handle 2 with ⌘ { do G  (2 B hT i ! (� [ ;(�>��) )); 2A
W����P���⌘ 0 = {return ~ 7! (handle 22 with ⌘), [OpG : 7! 2Op]Op2O}

handle (do ~  21; 22) with ⌘ { handle 21 with ⌘ 0 W����D�⌘ 0 = {return ~ 7! (let G = ~ B W1 in 2A ), [OpG : 7! 2Op]Op2O}
handle 2 B (W1 ! W2) with ⌘ { handle 2 with ⌘ 0 W����C���

Fig. 5. E�E�� Optimizations: Handler Reduction RulesExample 3.1. The set of handler reduction rules does not feature the following rule for return

that is the static counterpart to the corresponding case in the operational semantics.
⌘ = {return G 7! 2A , [OpG : 7! 2Op]Op2O}

handle ((return E) B (W1 ! W 01) B . . . B (W= ! W 0= )) with ⌘ { 2A [(E B W1 B . . . B W=)/G]
W����R��

The reason why this rule is not included is that it is not needed. Indeed, it can be derived from the

other rules. Take a computation handle (return E B W ! ;�1 ) with ⌘ where ;�1 is a coercion that

suitably increases the pure dirt of the returned value to one expected by the handler ⌘ : T1 ! �1 )

T2 ! �2. Since return E is pure, it is also pure relative to ⌘, so we can employ W����P��� and

D��R�� to get
handle (return E B W ! ;�1 ) with ⌘ { doG  (return E B W ! ;�2 ); 2A { 2A [(E B W)/G]

A case with multiple coercions around return E proceeds similarly.
Example 3.2. A similar derived case is that of handling a bind do ~  21; 22 where 21 is pure

relative to a handler ⌘. If we employW����D�, we get the reductionhandle (do G  21; 22) with ⌘ { handle 21 with ⌘ 0
where ⌘ 0 is the same as ⌘ except for the return clause. Since 21 was pure relative to ⌘, it is also Take

a computation handle (return E B W ! ;�1 ) with ⌘ where ;�1 is a coercion that suitably increases

the pure dirt of the returned value to one expected by the handler ⌘ : T1 ! �1 ) T2 ! �2. Since
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With the basic specialisation strategy, further optimisation does not succeed in tying the knot.
Instead, we obtain this partially optimised form:

let rec range n = ... in
let rec range � n =

match n with
| 0 -> []

| _ -> handle (range (n - 1)) with
| x -> 42 :: x

| effect (Fetch _) k -> k 42

in
range � 5

In the tail position, the rewrite rule W����D� has kicked in to pull the call’s continuation into the
return clause of the handler. The resulting handler is wrapped around the recursive call, but di�ers
from the original handler and prevents us from tying the knot.
We could create a second specialised function definition for this new handler, but the same

problem would arise at its recursive call and so on, yielding an infinite sequence of specialised
functions. Instead, we use generalisation to break out of this diverging process. Instead of special-
ising the function for one specific handler in this diverging sequence, we specialise it for what
they all have in common (the operation clauses) and parametrise it in what is di�erent (the return
clause).

This yields the following general rewrite rule: for any recursive definition let rec 5 G = 2 5 in 2 ,
we perform the following general rewrite inside 2 :

handle 5 E with {return G 7! 2A , [OpG : 7! 2Op]Op2O}

{

let rec 5 0 (G,:) = handle 2 5 with {return G 7! : G, [OpG : 7! 2Op]Op2O} in 5 0 (E, fun G 7! 2A )

and replace each handled recursive call handle 5 E 0 with {return G 7! 2 0A , [OpG : 7! 2Op]Op2O}
with 5 0 (E 0, 2 0A ).

This strategy enables us to tie the knot in the range example and obtain this form

let rec range � (n, k) =

match n with
| 0 -> k []

| _ -> range � (n - 1, (fun x -> k (42 :: x)))

in
range � (5, (fun x -> x))

Note that in e�ect this approach selectively CPS-transforms recursive functions to specialise
them for a particular handler. Due to an explicit continuation argument, the resulting function is
less e�icient, so in practice, we always a�empt the simpler specialization and use the general one
as a fallback in case it fails.

Termination. If le� unchecked, function specialisation can diverge. This is illustrated by the
following small example program:

let rec go n =

if n = 0 then perform (Fail ())

else if perform (Decide ()) then go (n-1) else go (n-2)

in handle (go m) with
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let rec go n = ... in
let rec go � n = if n > 100 then n else go � (n * n + 1) in
go � 0

Generalization to Varying Return Clauses. The above basic specialisation strategy only works
when the return clause of the handler has not changed in the recursive call. Yet, that is o�en not
the case. Take for instance the following example.

let rec range n =

match n with
| 0 -> []
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in
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operation. To keep the example small we use a handler that always yields the value 42.

2If 5 is a function parameter of a higher-order function, we don’t do anything.
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Fig. 8. Relative runtimes of finding a single solution of the =-queens problem
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Fig. 9. Relative runtimes of finding a list of all solutions of the =-queens problem

E�� Multicore OC��� Capabilities

one solution of =-queens (Figure 8) 135 % 196 % 139 %
all solutions of =-queens (Figure 9) 116 % 201 %

stateful counter (Figure 10) 101 % 6,090 % 556 %
list of generator values (Figure 11) 185 % 308 %

stateful sum of generator values (Figure 12) 193 % 8,695 % 559 %
exceptional arithmetic (Figure 13) 145 % 92 %

stateful arithmetic (Figure 14) 140 % 281 %
pure tree traversal (Figure 15) 88 % 422 %

reader tree traversal (Figure 16) 221 % 391 %
stateful tree traversal (Figure 17) 249 % 367 %

Table 2. Relative runtimes of additional benchmarks

We repeated the comparison on a number of additional benchmarks, including a few provided
by Schuster et al. [2020]. Since the results do not vary too much with the problem size, we present
only the largest instance of each in Table 2. Full graphs together with a description of executed
programs can be found in Appendix A.
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E�� Multicore OC��� Capabilities

one solution of =-queens 135 % 196 % 139 %
all solutions of =-queens 116 % 201 %

stateful counter 101 % 6,090 % 556 %
list of generator values 185 % 308 %

stateful sum of generator values 193 % 8,695 % 559 %
exceptional arithmetic 145 % 92 %

stateful arithmetic 140 % 281 %
pure tree traversal 88 % 422 %

reader tree traversal 221 % 391 %
stateful tree traversal 249 % 367 %

Table 2. Relative runtimes of additional benchmarks

are faster is the arithmetic expression interpreter, in which exceptions are triggered rarely. Since
e�ects are expensive only to trigger, but not to install, this outperforms the CPS variant that our
compiler produces. A hand-wri�en variant using OC��� exceptions is even faster with a relative
runtime of 57 %. Generated code for pure tree traversal similarly transforms direct code into CPS
and is thus faster than a hand-wri�en code which one would usually write in the direct style.

The last example of a stateful tree traversal is particularly interesting because it combines two
handlers: one for non-determinism and one for state. Since the two handlers are orthogonal to
each other, one may fla�en them into a single handler with all the clauses. The code generated
from this fla�ened handler turns out to be even faster than hand-wri�en code (around 90 %),
showing the full potential of additional source-to-source optimizations.

7 RELATED WORK
Leijen [2017] presents a type-directed compilation approach for the Koka language. His se�ing
di�ers from ours in several ways: Firstly, Koka features row-typing rather than e�ect subtyping.
Secondly, Koka’s compiler directly targets a CPS backend, rather than an intermediate language.
The only featured optimisation is that of selective CPS: pure computations are translated to
direct-style expressions. Unfortunately, no experimental evaluation is provided to establish the
significance of this optimisation. More recently, Xie and Leijen [2021] have started developing
e�icient compilation techniques based on evidence passing. It would be interesting to examine the
relationship between their and our approach, especially as we believe that our source-to-source
transformations can be easily inserted as an additional stage in the Koka compiler and adapted to
draw on the row-typing information.

TheMulticoreOC��� backend [Dolan et al. 2015] provides supports for algebraic e�ects in terms
of the multicore fibers to e�iciently represent delimited continuations at runtime. These come both
in a cheaper one-shot and more expensive multi-shot form. Several works [Hillerström et al. 2016;
Kiselyov and Sivaramakrishnan 2016] have shown that this provides an e�ective compilation target
for algebraic e�ects. Yet, as far as we know, no existing works performs optimising compilation in
this se�ing.
Kammar et al. [2013] compare the performance of a number of di�erent encodings of e�ect

handlers in Haskell. Inspired by this comparison,Wu and Schrijvers [2015] show how e�ect handlers
can be fused and inlined when programs are represented with the codensity monad. They explain
that, with a careful setup based on type classes, the GHC Haskell compiler automatically carries
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FUTURE WORK



🥞



let test_generator n =  
  let rec generate (l, u) =  
    if l > u then () else 
      perform (Yield l); generate (l + 1, u) 
  in ( 
  handle 
    handle 
      generate (perform (Get ()), n) 
    with  
    | effect (Yield e) k -> 
        (perform (Put (perform (Get ()) + e))); k () 
  with  
  | x -> fun s -> s    
  | effect (Put s') k -> fun s ->  k () s' 
  | effect (Get _) k -> fun s -> k s s 
  ) 0 

let test_generator n = 
  let rec generate’ (l, u) x = 
    if l > u then x 
    else generate’ (l + 1, u) (x + l) 
  in 
  generate’ (0, n) 0



∀
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