EFFICIENT COMPILATION OF ALGEBRAIC EFFECT HANDLERS

Georgios Karachalias

Filip Koprivec
Tom Schrijvers
effect Put: int -> unit effect Get: unit -> int
let rec loop $\mathrm{n}=$
if $\mathrm{n}=0$ then () else perform (Put (perform (Get ()) + 1)); loop (n - 1)
let state_handler = handler effect (Put s') k \rightarrow (fun _ \rightarrow k () s^{\prime}) effect (Get ()) k \rightarrow (fun $\bar{s} \rightarrow \mathrm{k} \mathrm{s}$ s) _ -> (fun s \rightarrow s)
let main $\mathrm{n}=$
(with state_handler handle loop n) 0
"Gffbrings home the bacon,
but it is too slow
because it is interpreted."

- Matija Pretnar, 21st July 2021

MAKING EFF

GREAT AGAIN

effect Put: int -> unit effect Get: unit -> int
type 'a computation =
| Return of 'a
Put of int * (unit -> 'a computation)
Get of unit * (int -> 'a computation)
let rec (>>=) comp $\mathrm{k}=$
match comp with
| Return x -> k x
Put (s, k^{\prime}) ->
Put (s, fun _ $\rightarrow k^{\prime}$ () >>= k)
| Get (_, k') ->
$\operatorname{Get}^{-}\left(()\right.$, fun $\left.y \rightarrow k^{\prime} y \gg=k\right)$
let rec loop $\mathrm{n}=$
if $n=0$ then () else perform (Put (perform (Get ()) + 1)); loop (n - 1)
let rec loop $\mathrm{n}=$
equal $n \gg=$ fun f-> f 0 >>= fun b ->
if b then return () else get () >>= fun s -> plus s >>= fun g \rightarrow g 1 >>= fun s' -> put s' >>= fun _ -> minus $\mathrm{n} \rightarrow>=$ fun $\mathrm{h} \rightarrow$ h $1 \quad \gg=$ fun $n^{\prime} \rightarrow$ loop n'
let equal =
fun x->
return (fun y -> return ($x=y$))
effect Put: int -> unit effect Get: unit \rightarrow int
type ('a, 'b) handler_clauses = \{
return : 'a -> 'b;
put : int -> (unit -> 'b) -> 'b;
get : unit -> (int -> 'b) -> 'b
\}
let rec handle hols =
function
| Return x -> hcls.return x
Put (x, k) ->
cl.put x (fun $y \rightarrow$ handle hols (k y))
| Get (x, k) ->
cl.get x (fun $y \rightarrow$ handle hols (k y))
let state_handler = handler effect (Put $\left.s^{\prime}\right)$ k $->$ (fun _ $->$ k () $\left.s^{\prime}\right)$ effect (Get ()) k \rightarrow (fun $s \rightarrow>k s)$
_ -> (fun s \rightarrow s)
let state_handler = handler \{
put $=$ (fun $s^{\prime} k$ return
(fun _ $->$ k () >>= fun f \rightarrow f $\left.s^{\prime}\right)$);
get $=$ (fun () k \rightarrow return
(fun $s \rightarrow$ k s >>= fun f \rightarrow f));
return $=$ (fun _ $->$ return
(fun s -> return s));
\}
let main $\mathrm{n}=$
(with state_handler handle loop n) 0
let main $\mathrm{n}=$
state_handler (loop n) >>= (fun f -> f 0)

$$
\begin{aligned}
& \text { let rec loop } n= \\
& \text { equal } n \gg=\text { fun } f \rightarrow \\
& \text { f } 0 \quad \gg=\text { fun } b-> \\
& \text { if } b \text { then return () else } \\
& \text { get () >>= fun s }-> \\
& \text { plus } s \gg=\text { fun g } \\
& \text { g } 1 \\
& \text { put } s^{\prime} \gg=\text { fun } s^{\prime} \rightarrow> \\
& \text { minus } n \gg=\text { fun } \bar{h} \rightarrow \\
& \text { h } 1 \\
& \text { loop } n^{\prime}
\end{aligned}
$$

let rec loop n = let $\mathrm{f}=(=) \mathrm{n}$ in let $b=f 0$ in
if b then return () else
get () >>= fun s ->
let $g=(+) \mathrm{s}$ in
let $\mathrm{s}^{\prime}=\mathrm{g} 1$ in
put s' >>= fun _ ->
let $\mathrm{h}=(-) \mathrm{n}$ in
let $\mathrm{n}^{\prime}=\mathrm{h} 1$ in
loop n'

effect Put: int -> unit
effect Get: unit -> int
let rec loop $\mathrm{n}=$
if $\mathrm{n}=0$ then () else
perform (Put (perform (Get ()) + 1));
loop (n - 1)
let state_handler = handler
| effect (Put s^{\prime}) k \rightarrow (fun _ \rightarrow k () s^{\prime})
effect (Get ()) k \rightarrow (fun $s \rightarrow$ k s s)
| _ -> (fun s -> s)
let main $\mathrm{n}=$
(with state_handler handle loop n) 0
let main $\mathrm{n}=$
let rec state_handler_loop m s =
if $m=0$ then s
else state_handler_loop (m - 1) (s + 1)
in
state_handler_loop n 0

Efficient Compilation of Algebraic Effects and Handlers

Fig. 14. Relative run-times of Loops example

GXEFF \& NOEFF

ExEff SYNTAX

value $\quad v::=x \mid$ unit \mid fun $(x: T) \mapsto c|h| v \triangleright \gamma$
handler $\quad h::=\left\{r e t u r n(x: T) \mapsto c_{r}, \mathrm{Op}_{1} x k \mapsto c_{\mathrm{Op}_{1}}, \ldots, \mathrm{Op}_{n} x k \mapsto c_{\mathrm{op}_{n}}\right\}$ computation $\quad c::=\operatorname{return} v|\operatorname{Op} v(y: T . c)|$ do $x \leftarrow c_{1} ; c_{2} \mid$ handle c with v $\left|v_{1} v_{2}\right|$ let $x=v$ in $c \mid$ let rec $f x=c_{1}$ in $c_{2} \mid c \triangleright \gamma$
value type $\quad T::=$ Unit $|T \rightarrow \underline{C}| \underline{C}_{1} \Rightarrow \underline{C}_{2}$
computation type $\quad \underline{C}::=T!\Delta$
$\operatorname{dirt} \quad \Delta::=\emptyset \mid\{0 p\} \cup \Delta$
coercion type $\pi::=T_{1} \leqslant T_{2}\left|\Delta_{1} \leqslant \Delta_{2}\right| \underline{C}_{1} \leqslant \underline{C}_{2}$

$$
\text { coercion } \quad \gamma::=\langle U n i t\rangle\left|\gamma_{1} \rightarrow \gamma_{2}\right| \gamma_{1} \Rightarrow \gamma_{2}\left|\emptyset_{\Delta}\right|\{0 p\} \cup \gamma \mid \gamma_{1}!\gamma_{2}
$$

NoEff SYNTAX

term
handler
type

$$
A, B::=\text { Unit }|A \rightarrow A| A \Rightarrow B \mid \operatorname{Comp} A
$$

$$
\pi::=A \leqslant B
$$

$$
\gamma::=\langle\text { Unit }\rangle\left|\gamma_{1} \rightarrow \gamma_{2}\right| \gamma_{1} \Rightarrow \gamma_{2}|\operatorname{comp} \gamma| \text { return } \gamma \mid \ldots
$$

Translating ExEff to NoEff

$$
\llbracket T!\Delta \rrbracket= \begin{cases}\llbracket T \rrbracket & \text {, if } \Delta=\emptyset \\ \text { Comp } \llbracket T \rrbracket & \text {, if } \Delta \neq \emptyset\end{cases}
$$

$\llbracket \Gamma \vdash\left(\right.$ do $\left.x \leftarrow c_{1} ; c 2\right): B!\Delta \rrbracket= \begin{cases}\text { let } x=\llbracket c_{1} \rrbracket \text { in } \llbracket c_{2} \rrbracket & , \text { if } \Delta=\emptyset \\ \text { do } x \leftarrow \llbracket c_{1} \rrbracket ; \llbracket c_{2} \rrbracket & \text { if } \Delta \neq \emptyset\end{cases}$

$$
\llbracket \gamma_{1}!\gamma_{2} \rrbracket= \begin{cases}\llbracket \gamma_{1} \rrbracket & , \text { if } \gamma_{2}: \emptyset \leq \emptyset \\ \text { return } \llbracket \gamma_{1} \rrbracket & , \text { if } \gamma_{2}: \emptyset \leq \Delta \\ \text { comp } \llbracket \gamma_{1} \rrbracket & , \text { if } \gamma_{2}: \Delta \leq \Delta^{\prime}\end{cases}
$$

OPTIMZATION

RULES

ExEff coercion optimizations

$$
\frac{\gamma: T \leqslant T}{v \triangleright \gamma \leadsto v} \text { Ецім-Co-VAL } \quad \frac{\gamma: \underline{C} \leqslant \underline{C}}{c \triangleright \gamma \leadsto c} \text { Еиім-Со-Сомр }
$$

$$
\overline{(\mathrm{Op} v(y: T . c)) \triangleright \gamma \sim \mathrm{Op} v(y: T .(c \triangleright \gamma))} \text { Push-Co-Op }
$$

$$
\frac{c_{1}: T}{\left(\text { do } x \leftarrow c_{1} ; c_{2}\right) \triangleright\left(\gamma_{1}!\gamma_{2}\right) \leadsto \text { do } x \leftarrow\left(c_{1} \triangleright\langle T\rangle!\gamma_{2}\right) ;\left(c_{2} \triangleright \gamma_{1}!\gamma_{2}\right)} \text { Push-Co-Do }
$$

$$
\overline{\left(v_{1} \triangleright \gamma_{1} \rightarrow \gamma_{2}\right) v_{2} \leadsto\left(v_{1}\left(v_{2} \triangleright \gamma_{1}\right)\right) \triangleright \gamma_{2}} \text { Push-Co-App }
$$

$\overline{\text { handle } c \text { with }\left(v \triangleright \gamma_{1} \Rightarrow \gamma_{2}\right) \leadsto\left(\text { handle }\left(c \triangleright \gamma_{1}\right) \text { with } v\right) \triangleright \gamma_{2}}$ Push-Co-Handle

ExEFF β-REDUCTIONS

$$
\overline{(\text { fun }(x: T) \mapsto c) v \leadsto c[v / x]} \text { App-Fun }
$$

$$
\overline{\text { let } x=v \text { in } c \leadsto c[v / x]} \operatorname{LetVAL}
$$

$$
\overline{\left(\text { do } x \leftarrow\left((\operatorname{return} v) \triangleright\left(\gamma_{v_{1}}!\gamma_{\Delta_{1}}\right) \triangleright \cdots \triangleright\left(\gamma_{v_{n}}!\gamma_{\Delta_{n}}\right)\right) ; c\right) \leadsto c\left[\left(v \triangleright \gamma_{v_{1}} \triangleright \cdots \triangleright \gamma_{v_{n}}\right) / x\right]} \text { Do-Ret }
$$

$$
\begin{gathered}
\overline{\text { do } x \leftarrow\left(\operatorname{Op} v\left(y: T . c_{1}\right)\right) ; c_{2} \leadsto \operatorname{Op} v\left(y: T . \text { do } x \leftarrow c_{1} ; c_{2}\right)} \text { Do-Op } \\
\overline{\left(\text { do } x \leftarrow\left(\operatorname{do} y \leftarrow c_{1} ; c_{2}\right) ; c_{3}\right) \leadsto\left(\operatorname{do} y \leftarrow c_{1} ;\left(\operatorname{do} x \leftarrow c_{2} ; c_{3}\right)\right)} \text { Do-Do }
\end{gathered}
$$

Obvious ExEff handler optimizations

$$
\mathrm{Op} \notin O
$$

$\frac{\mathrm{Op} \notin O}{\text { handle }(\mathrm{Op} v(y: T . c)) \text { with } h \leadsto \mathrm{Op} v(y: T . \text { handle } c \text { with } h)}$ With-Unhandled-Op

$$
h=\left\{\text { return } x \mapsto c_{r},\left[\mathrm{Op} x k \mapsto c_{\mathrm{Op}}\right]_{\mathrm{Op} \in O}\right\}
$$

Less obvious ExEff handler optimizations

$$
h: T_{i}!\Delta_{i} \Rightarrow T_{o}!\Delta_{o} \quad c: T!\Delta \quad \Delta \cap O=\emptyset
$$

handle c with $h \leadsto$ do $x \leftarrow\left(c \triangleright\langle T\rangle!\left(\Delta \cup \emptyset_{\left(\Delta_{o}-\Delta\right)}\right)\right) ; c_{r}$
$h^{\prime}=\left\{\right.$ return $y \mapsto\left(\right.$ handle c_{2} with $\left.\left.h\right),\left[0 p x k \mapsto c_{0 \mathrm{p}}\right]_{\mathrm{Op} \in O}\right\}$ handle (do $y \leftarrow c_{1} ; c_{2}$) with $h \leadsto$ handle c_{1} with h^{\prime}
$h^{\prime}=\left\{\right.$ return $y \mapsto\left(\right.$ let $x=y \triangleright \gamma_{1}$ in $\left.\left.c_{r}\right),\left[0 p x k \mapsto c_{0 p}\right]_{0 \mathrm{p} \in O}\right\}$ handle $c \triangleright\left(\gamma_{1}!\gamma_{2}\right)$ with $h \leadsto$ handle c with h^{\prime}

$$
h=\left\{\operatorname{return} x \mapsto c_{r},\left[\operatorname{Op} x k \mapsto c_{\mathrm{op}}\right]_{\mathrm{Op} \in O}\right\}
$$

NoEff Optimizations

$$
\frac{\gamma: A \leqslant A}{t \triangleright \text { return } \gamma \leadsto \text { return } t} \text { Elim-Ret-Co }
$$

$$
\frac{\gamma: A \leqslant A}{t \triangleright \gamma \leadsto t} \text { ELIM-Co-TERM }
$$

$$
\overline{\text { do } x \leftarrow\left(\operatorname{return} t_{1}\right) ; t_{2} \leadsto t_{2}\left[t_{1} / x\right]} \text { Do-RET }
$$

$$
\overline{\text { let } x=t_{1} \text { in } t_{2} \leadsto t_{2}\left[t_{1} / x\right]} \operatorname{LETVAL}^{\text {EVAL }}
$$

FUNCTION

 SPECIALZATION
let rec loop $\mathrm{n}=$...def...

let state_handler = ...
let main $\mathrm{n}=$
(with state_handler handle (loop n)) 0

let rec loop $\mathrm{n}=$...def...

let state_handler = ...
let main $\mathrm{n}=$
let loop' n =
with state_handler handle ...def...
in
(with state_handler handle (loop n)) 0

let rec loop $\mathrm{n}=$...def...

let state_handler = ...
let main $\mathrm{n}=$
let loop' n =
with state_handler handle ...def...
in
(loop' n) 0

let rec loop $\mathrm{n}=$...def...

let state_handler = ...
let main $\mathrm{n}=$
let loop' n =
with state_handler handle
if $\mathrm{n}=0$ then () else perform (Put (perform (Get ()) + 1)); loop (n - 1)
in
(loop' n) 0
let rec loop $\mathrm{n}=$...def...
let state_handler = ...
let main $\mathrm{n}=$
let loop' $\mathrm{n}=$
if $\mathrm{n}=0$ then
with state_handler handle ()
else
with state_handler handle perform (Put (perform (Get ()) + 1)); loop (n - 1)
in
(loop' n) 0
let rec loop n = ...def...
let state_handler = ...
let main $\mathrm{n}=$
let loop' $\mathrm{n}=$
if $\mathrm{n}=0$ then
fun s -> s
else
with state_handler handle perform (Put (perform (Get ()) + 1)); loop (n - 1)
in
(loop' n) 0
let rec loop $\mathrm{n}=$...def...
let state_handler = ...
let main $\mathrm{n}=$
let loop' $\mathrm{n}=$
if $n=0$ then
fun s-> s
else
fun s-> (fun y ->
with state_handler handle perform (Put (y + 1)); loop (n - 1)
) s s
in
(loop' n) 0
let rec loop $\mathrm{n}=$...def...
let state_handler = ...
let main $\mathrm{n}=$
let loop' $\mathrm{n}=$
if $\mathrm{n}=0$ then
fun s -> s
else
fun s-> (fun y $\rightarrow>$
(fun _ -> (
with state_handler handle
loop (n - 1)
) () $(y+1)$
) s s
in
(loop' n) 0

let rec loop $\mathrm{n}=$...def...

let state_handler = ...
let main $\mathrm{n}=$
let loop' n =
if $\mathrm{n}=0$ then fun s -> s
else
fun s ->
with state_handler handle loop (n - 1) (s + 1)
in
(loop' n) 0

let rec loop $\mathrm{n}=$...def...

let state_handler = ...
let main $\mathrm{n}=$
let loop' n =
if $\mathrm{n}=0$ then fun s -> s
else
fun s ->
loop' (n - 1) (s + 1)
in
(loop' n) 0

let rec loop $\mathrm{n}=$...def...

let state_handler = ...
let main $\mathrm{n}=$
let loop' n s =
if $\mathrm{n}=0$ then s
else

$$
\text { loop' }(n-1)(s+1)
$$

in
(loop' n) 0

$$
\text { let } \operatorname{rec} f x=c_{f} \text { in } c
$$

handle $f v$ with $h \quad \leadsto \quad$ let $\operatorname{rec} f^{\prime} x=$ handle c_{f} with h in $f^{\prime} v$

$$
\text { let } \operatorname{rec} f x=c_{f} \text { in } c
$$

handle $f v$ with $h \quad \leadsto \quad$ let rec $f^{\prime} x=$ handle c_{f} with h in $f^{\prime} v$
$\frac{h^{\prime}=\left\{\text { return } y \mapsto\left(\text { handle } c_{2} \text { with } h\right),\left[\text { Op } x k \mapsto c_{0 \mathrm{p}}\right]_{0 \mathrm{p} \in O}\right\}}{\text { handle }\left(\text { do } y \leftarrow c_{1} ; c_{2}\right) \text { with } h \leadsto \text { handle } c_{1} \text { with } h^{\prime}}$
$h^{\prime}=\left\{r\right.$ handle c_{1} with h^{\prime} WIth-Do
handle $c \Delta\left(\gamma_{1}!\gamma_{2}\right)$ with $h \leadsto$ handle c with h^{\prime}, $\left.c_{\mathrm{op}_{\mathrm{p}}}\right\}$

$$
\text { let rec } f x=c_{f} \text { in } c
$$

handle $f v$ with $\left\{\right.$ return $\left.x \mapsto c_{r},\left[\operatorname{Op} x k \mapsto c_{\mathrm{Op}}\right]_{\mathrm{Op} \in O}\right\}$
 $~$

let rec $f^{\prime}(x, k)=$ handle c_{f} with $\left\{\operatorname{return} x \mapsto k x,\left[0 p x k \mapsto c_{\mathrm{op}}\right]_{\mathrm{Op} \in O}\right\}$ in $f^{\prime}\left(v\right.$, fun $\left.x \mapsto c_{r}\right)$

BENGHMARKS

Relative speed of A

 Single solution n-Queeens benchmark

Relative speed in

OTHER BENCHMARKS

Eff Multicore OCaml Capabilities

one solution of n-queens	$\mathbf{1 3 5 \%}$	196%	139%
all solutions of n-queens	$\mathbf{1 1 6 \%}$	201%	
stateful counter	$\mathbf{1 0 1 \%}$	$6,090 \%$	556%
list of generator values	$\mathbf{1 8 5 \%}$	308%	
stateful sum of generator values	$\mathbf{1 9 3 \%}$	$8,695 \%$	559%
exceptional arithmetic	$\mathbf{1 4 5 \%}$	$\mathbf{9 2 \%}$	
stateful arithmetic	$\mathbf{1 4 0 \%}$	281%	
pure tree traversal	$\mathbf{8 8 \%}$	422%	
reader tree traversal	$\mathbf{2 2 1 \%}$	391%	
stateful tree traversal	$\mathbf{2 4 9 \%}$	367%	

FUTURE WORK

e

```
let test_generator n =
    let rec generate (l, u) =
        if l > u then () else
            perform (Yield l); generate (l + 1, u)
    in (
    handle
        handle
            generate (perform (Get ()), n)
        with
            effect (Yield e) k ->
                (perform (Put (perform (Get ()) + e))); k ()
    with
    | x -> fun s -> s
    effect (Put s') k >> fun s -> k () s'
    effect (Get _) k -> fun s >> k s s
    ) 0
let test_generator n =
    let rec generate' (l, u) x =
        if l > u then x
        else generate' (l + 1, u) (x + l)
    in
    generate' (0, n) 0
```


QUESTIONS?

