SPLS, 7 Jun 2023, University of the West of Scotland

ASYNCHRONOUS OPERATIONS

Danel Ahman Matija Pretnar
University of Ljubljana, Slovenia

THE IDEA

M_{1}

$M_{1} \rightsquigarrow M_{2}$

$M_{1} \leadsto M_{2} \rightsquigarrow M_{3}$

$M_{1} \leadsto M_{2} \rightsquigarrow M_{3} \rightsquigarrow M_{4}$

$M_{1} \rightsquigarrow M_{2} \rightsquigarrow M_{3} \rightsquigarrow M_{4} \rightsquigarrow M_{5}$

M_{1}

$M_{1} \rightsquigarrow M_{2}$

$\uparrow_{\text {op }}$
 $M_{1} \rightsquigarrow M_{2}$

$$
\begin{array}{cc}
& \uparrow_{\text {op }} \\
M_{1 \rightsquigarrow} \rightsquigarrow M_{2} & \downarrow_{\text {res }} \\
M_{3}
\end{array}
$$

$\uparrow_{\text {op }}$ $\downarrow_{\text {res }}$
 $M_{1} \leadsto M_{2}$
 $M_{3} \leadsto M_{4}$

$\uparrow_{\text {op }}$ $\downarrow_{\text {res }}$
 $M_{1} \rightsquigarrow M_{2}$
 $M_{3} \rightsquigarrow M_{4} \rightsquigarrow M_{5}$

M_{1}

$M_{1} \rightsquigarrow M_{s}$

$\uparrow_{\text {req }}$
 $M_{1} \rightsquigarrow M_{s}$

$\uparrow_{\text {req }}$
 $M_{1} \leadsto M_{S} \leadsto M_{2}$

$\uparrow_{\text {req }}$
 $M_{1} \leadsto M_{S} \leadsto M_{2} \leadsto M_{3}$

$\uparrow_{\text {req }}$
 $M_{1} \leadsto M_{s} \leadsto M_{2} \rightsquigarrow M_{3} \leadsto M_{4}$

$\uparrow_{\text {req }}$
 $M_{1 \leadsto} \leadsto M_{S} \rightsquigarrow M_{2} \rightsquigarrow M_{3} \leadsto M_{4}$

$$
\begin{aligned}
& \uparrow_{\text {req }} \\
& \downarrow_{\text {resp }} \\
& M_{1} \leadsto M_{S} \leadsto M_{2} \leadsto M_{3} \leadsto M_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \uparrow_{\text {req }} \quad \downarrow_{\text {resp }} \\
& \begin{aligned}
M_{1} \leadsto M_{s} \leadsto M_{2} \leadsto M_{3} \leadsto & M_{4} \\
& \\
& \\
& M_{p}
\end{aligned}
\end{aligned}
$$

M_{1}

$M_{1} \rightsquigarrow M_{w}$

$$
\begin{gathered}
\downarrow_{\text {req }} \\
M_{1} \rightsquigarrow M_{w}
\end{gathered}
$$

$$
M_{1 \rightsquigarrow} \stackrel{\downarrow_{\text {req }}}{M_{w \rightsquigarrow}} M_{p}
$$

$\downarrow_{\text {req }}$
 $M_{1} \rightsquigarrow M_{w \rightsquigarrow} M_{p} \rightsquigarrow M_{s}$

$$
M_{1 \sim \downarrow_{\text {req }} \leadsto M_{w} \leadsto M_{p} \leadsto M_{s}}^{\uparrow_{\text {resp }}}
$$

$\downarrow_{\text {req }} \quad \uparrow_{\text {resp }}$
 $M_{1} \rightsquigarrow M_{w \leadsto} \leadsto M_{p} \rightsquigarrow M_{s} \rightsquigarrow M_{w}$

M_{1}

$M_{1} \rightsquigarrow M_{2}$

$\downarrow_{\text {stop }}$
$M_{1} \rightsquigarrow M_{2}$

$$
\begin{gathered}
\downarrow_{\text {stop }} \\
M_{1} \rightsquigarrow M_{2} \rightsquigarrow M_{w_{2}}
\end{gathered}
$$

$$
\begin{array}{r}
\quad \downarrow_{\text {stop }} \downarrow_{\text {go }} \\
M_{1 \rightsquigarrow} \rightsquigarrow M_{2} \rightsquigarrow M_{w_{2}}
\end{array}
$$

$$
\begin{gathered}
\downarrow_{\text {stop }} \downarrow_{\text {go }} \\
M_{1 \rightsquigarrow} M_{2 \rightsquigarrow} M_{w_{2}^{\rightsquigarrow}} M_{2}
\end{gathered}
$$

$$
\begin{gathered}
\downarrow_{\text {stop }} \downarrow_{\text {go }} \\
M_{1 \rightsquigarrow} M_{2 \rightsquigarrow} M_{w_{2}^{w}} M_{2 \rightsquigarrow} M_{3}
\end{gathered}
$$

M_{1}

$\uparrow_{\text {tick }}$
 M_{1}

$\uparrow_{\text {tick }}$
$M_{1} \rightsquigarrow M_{2}$

$$
\begin{aligned}
& \uparrow_{\text {tick }} \uparrow_{\text {tock }} \\
& M_{1} \rightsquigarrow M_{2}
\end{aligned}
$$

$\uparrow_{\text {tick }} \uparrow_{\text {tock }}$
$M_{1 \leadsto} M_{2 \leadsto} M_{1}$

$$
\begin{aligned}
& \uparrow_{\text {tick }} \uparrow_{\text {tock }} \uparrow_{\text {tick }} \\
& M_{1} \leadsto M_{2} \leadsto M_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \uparrow_{\text {tick }} \uparrow_{\text {tock }} \uparrow_{\text {tick }} \\
& M_{1 \leadsto M_{2} \leadsto M_{1} \leadsto M_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \uparrow_{\text {tick }} \uparrow_{\text {tock }} \uparrow_{\text {tick }} \uparrow_{\text {tock }} \\
& M_{1} \leadsto M_{2} \leadsto M_{1} \leadsto M_{2}
\end{aligned}
$$

$$
\begin{gathered}
\uparrow_{\text {tick }} \uparrow_{\text {tock }} \uparrow_{\text {tick }} \uparrow_{\text {tock }} \\
M_{1 \leadsto} \rightarrow M_{2 \leadsto \rightarrow} M_{1} \rightarrow M_{2 \leadsto} M_{1}
\end{gathered}
$$

THE IDEA

CORE CALCULUS
 fun $(x: X) \mapsto M \quad V W$ return $V \quad$ let $x=M$ in N

(fun $(x: X) \mapsto M) V \leadsto M[V / x]$ let $x=($ return $V)$ in $N \rightsquigarrow N[V / x]$

$$
\begin{gathered}
\frac{M \rightsquigarrow N}{\mathscr{E}[M] \rightsquigarrow \mathscr{E}[N]} \\
\mathscr{E}::=[] \mid \text { let } x=\mathscr{E} \text { in } N \mid
\end{gathered}
$$

demo

CORE CALCULUS
 fun $(x: X) \mapsto M \quad V W$ return $V \quad$ let $x=M$ in N

OUTGOING

 SIGNALS\uparrow op (V, M)

let $x=(\uparrow \mathrm{op}(V, M))$ in N
 $\leadsto \uparrow$ op $(V$, let $x=M$ in $N)$

$$
\mathscr{E}::=\cdots \mid \uparrow o p(V, \mathscr{E})
$$

$$
\begin{aligned}
& \text { let } x=(\uparrow \text { op }(V, M)) \text { in } N \\
& \rightsquigarrow \uparrow \text { op }(V, \text { let } x=M \text { in } N)
\end{aligned}
$$

$$
\mathscr{E} \quad \underset{\substack{\mathcal{E} \\ \\ \\ \\ \text { no bound } \\ \text { variable }}}{ }
$$

demo

OUTGOING

 SIGNALS\uparrow op (V, M)

INCOMING INTERRUPTS \downarrow op (V, M)

$\downarrow \mathrm{op}(V$, return $W) \rightsquigarrow$ return W

$\downarrow \mathrm{op}\left(V, \uparrow \mathrm{op}^{\prime}(W, M)\right) \rightsquigarrow \uparrow \mathrm{op}^{\prime}(W, \downarrow \mathrm{op}(V, M))$

$$
\mathscr{E}::=\cdots \mid \quad \downarrow \text { op }(V, \mathscr{E})
$$

demo

INCOMING INTERRUPTS \downarrow op (V, M)

INTERRUPT HANDLFRS

promise (op $x \mapsto M)$ as p in N

let $x=\left(\right.$ promise $\left(\right.$ op $\left.y \mapsto M_{1}\right)$ as p in $\left.M_{2}\right)$ in N \leadsto promise (op $y \mapsto M_{1}$) as p in (let $x=M_{2}$ in N)
promise (op $x \mapsto M)$ as p in $\uparrow \mathrm{op}^{\prime}(V, N)$ $\leadsto \uparrow \mathrm{op}^{\prime}(V$, promise $(\mathrm{op} x \mapsto M)$ as p in $N)$
$\mathscr{E}::=\cdots \quad$ promise $(\mathrm{op} x \mapsto M)$ as p in \mathscr{E}
let $x=\left(\right.$ promise $\left(\right.$ op $\left.y \mapsto M_{1}\right)$ as p in $\left.M_{2}\right)$ in N \leadsto promise (op $y \mapsto M_{1}$) as p in (let $x=M_{2}$ in N)
promise (op $x \mapsto M)$ as p in $\uparrow \mathrm{op}^{\prime}(V, N)$ $\rightsquigarrow \uparrow \mathrm{op}^{\prime}(V$, promise $(\mathrm{op} x \mapsto M)$ as p in $N)$
$\mathscr{E}::=\cdots \quad$ promise $(\mathrm{op} x \mapsto M)$ as p in \mathscr{E} bound variable
let $x=\left(\right.$ promise $\left(\mathrm{op} y \mapsto M_{1}\right)$ as p in $\left.M_{2}\right)$ in N $\xrightarrow{\sim}$ promise (op $y \mapsto M_{1}$) as p in (let $x=M_{2}$ in N) algebraicity
promise (op $x \mapsto M$) as p in $\uparrow \mathrm{op}^{\prime}(V, N)$ $\leadsto \uparrow \mathrm{op}^{\prime}(V$, promise $(\mathrm{op} x \mapsto M)$ as p in $N)$
$\mathscr{E}::=\cdots \quad$ promise $(\mathrm{op} x \mapsto M)$ as p in \mathscr{E} bound variable
let $x=\left(\right.$ promise $\left(\mathrm{op} y \mapsto M_{1}\right)$ as p in $\left.M_{2}\right)$ in N $\xrightarrow{\longrightarrow}$ promise (op $y \mapsto M_{1}$) as p in (let $x=M_{2}$ in N) algebraicity
promise (op $x \mapsto M$) as p in $\uparrow \mathrm{op}^{\prime}(V, N)$ $\leadsto \uparrow \mathrm{op}^{\prime}(V$, promise $(\mathrm{op} x \mapsto M)$ as p in $N)$ commutakivity
$\mathscr{E}::=\cdots \quad$ promise $(\mathrm{op} x \mapsto M)$ as p in \mathscr{E} bound variable
$\downarrow \mathrm{op}(V$, promise (op $x \mapsto M)$ as p in N) \leadsto let $p=M[V / x]$ in $\downarrow \mathrm{op}(V, N)$
$\downarrow \mathrm{op}^{\prime}(V$, promise (op $x \mapsto M)$ as p in N)
\leadsto promise (op $x \mapsto M)$ as p in $\downarrow \mathrm{op}^{\prime}(V, N)$

$\downarrow \mathrm{op}(V$, promise $(\mathrm{op} x \mapsto M)$ as p in N) $\leadsto \rightsquigarrow$ let $p=M[V / x]$ in \downarrow op (V, N)

 "handling"
)

$\downarrow \mathrm{op}^{\prime}(V$, promise $(\mathrm{op} x \mapsto M)$ as p in N) \leadsto promise (op $x \mapsto M)$ as p in $\downarrow \mathrm{op}^{\prime}(V, N)$

INTERRUPT HANDLFRS

promise (op $x \mapsto M)$ as p in N

AWATING PROMISES

 $\langle V\rangle$await V until $\langle x\rangle$ in M
await $\langle V\rangle$ until $\langle x\rangle$ in $M \rightsquigarrow M[V / x]$
let $x=($ await V until $\langle y\rangle$ in $M)$ in N \leadsto await V until $\langle y\rangle$ in (let $x=M$ in N)
\downarrow op (V, await W until $\langle x\rangle$ in M)
\rightsquigarrow await W until $\langle x\rangle$ in \downarrow op (V, M)
await $\langle V\rangle$ until $\langle x\rangle$ in $M \rightsquigarrow M[V / x]$
let $x=($ await V until $\langle y\rangle$ in $M)$ in N \leadsto await V until $\langle y\rangle$ in (let $x=M$ in N) algebraicily
\downarrow op (V, await W until $\langle x\rangle$ in M)
\leadsto await W until $\langle x\rangle$ in \downarrow op (V, M)
"handling"
demo

AWATING PROMISES

 $\langle V\rangle$await V until $\langle x\rangle$ in M

TYPES

$$
\begin{gathered}
\Gamma \vdash V: X \\
\Gamma \vdash M: X!\mathscr{C}
\end{gathered}
$$

$$
\Gamma, x: X, \Gamma^{\prime} \vdash x: X
$$

$$
\overline{\Gamma \vdash(): 1}
$$

$$
\Gamma, x: X \vdash M: Y!\mathscr{C}
$$

$\Gamma \vdash$ fun $(x: X) \mapsto M: X \rightarrow Y!\mathscr{C}$

$\frac{\Gamma \vdash V: X \rightarrow Y!\mathscr{C} \quad \Gamma \vdash W: X}{\Gamma \vdash V W: Y!\mathscr{C}}$

$$
\frac{\Gamma \vdash V: X}{\Gamma \vdash \text { return } V: X!\mathscr{C}}
$$

$$
\frac{\Gamma \vdash M: X!\mathscr{C} \quad \Gamma, x: X \vdash N: Y!\mathscr{C}}{\Gamma \vdash \operatorname{let} x=M \text { in } N: Y!\mathscr{C}}
$$

$$
\frac{\Gamma \vdash V: X}{\Gamma \vdash\langle V\rangle:\langle X\rangle}
$$

$\frac{\Gamma \vdash V:\langle X\rangle \quad \Gamma, x: X \vdash M: Y!\mathscr{C}}{\Gamma \vdash \text { await } V \text { until }\langle x\rangle \text { in } M: Y!\mathscr{C}}$

$$
\begin{gathered}
\mathscr{C}=(o, l) \\
o=\left\{\mathrm{op}_{1}, \ldots, \mathrm{op}_{m}\right\} \\
l=\left\{\mathrm{op}_{1}^{\prime} \mapsto \mathscr{C}_{1}, \ldots, \mathrm{op}_{n}^{\prime} \mapsto \mathscr{C}_{n}\right\}
\end{gathered}
$$

$$
\begin{gathered}
l_{p_{1}}=\{\text { ping } \mapsto(\{\text { pong }\}, \varnothing)\} \\
l_{p}=\left\{\text { ping } \mapsto\left(\{\text { pong }\}, l_{p}\right)\right\} \\
l_{m}=\left\{\text { stop } \mapsto\left(\varnothing,\left\{\text { go } \mapsto\left(\varnothing, l_{m}\right)\right\}\right)\right\}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{op} \in o \quad \Gamma \vdash V: A_{\text {op }} \quad \Gamma \vdash M: X!(o, l) \\
& \Gamma \vdash \uparrow \text { op }(V, M): X!(o, l)
\end{aligned}
$$

$$
\begin{gathered}
l(\mathrm{op})=\mathscr{C} \\
\Gamma, x: A_{\mathrm{op}} \vdash M:\langle X\rangle!\mathscr{C} \\
\Gamma, p:\langle X\rangle \vdash N: Y!(o, l) \\
\hline \Gamma \vdash \text { promise }(\mathrm{op} x \mapsto M) \text { as } p \text { in } N: Y!(o, l)
\end{gathered}
$$

$$
\frac{\Gamma \vdash V: A_{\mathrm{op}} \quad \Gamma \vdash M: X!\mathscr{C}}{\Gamma \vdash \downarrow \mathrm{op}(V, M): X!(\mathrm{op} \downarrow \mathscr{C})}
$$

$\mathrm{op} \downarrow(o, l)= \begin{cases}\left(o \cup o^{\prime},\left.l\right|_{\mathrm{op} \neq \mathrm{op}} \cup l^{\prime}\right) & l(\mathrm{op})=\left(o^{\prime}, l^{\prime}\right) \\ (o, l) & \text { otherwise }\end{cases}$

progress

$$
\begin{array}{rl}
& \vdash M: X!\mathscr{C} \\
\Longrightarrow M & M M^{\prime} \quad \vee \quad M \text { is final }
\end{array}
$$

$$
\begin{gathered}
\Gamma \vdash M: X!\mathscr{C} \wedge \quad M \rightsquigarrow M^{\prime} \\
\Longrightarrow \Gamma \vdash M^{\prime}: X!\mathscr{C} \\
\text { preservation }
\end{gathered}
$$

progress

$$
\begin{aligned}
& \vdash M: X!\mathscr{C} \\
& \Longrightarrow M \\
& \Longrightarrow M^{\prime} \vee \quad M \text { is final }
\end{aligned}
$$

$$
\Gamma \vdash M: X!\mathscr{C} \quad \wedge \quad M \rightsquigarrow M^{\prime}
$$

$$
\Longrightarrow \Gamma \vdash M^{\prime}: X!\mathscr{C}
$$

preservation

progress

$$
\begin{aligned}
& \vdash M: X!\mathscr{C} \\
\Longrightarrow M \rightsquigarrow M^{\prime} & \vee \quad M \text { is final }
\end{aligned}
$$

$$
\begin{gathered}
\Gamma \vdash M: X!\mathscr{C} \wedge \wedge \quad M \rightsquigarrow M^{\prime} \\
\Longrightarrow \Gamma \vdash M^{\prime}: X!\mathscr{C} \\
\text { preservation }
\end{gathered}
$$

TYPES

$$
\begin{gathered}
\Gamma \vdash V: X \\
\Gamma \vdash M: X!(o, \imath)
\end{gathered}
$$

PROCESSES

run $M \quad P \| Q$
 \uparrow op $(V, P) \quad \downarrow \mathrm{op}(V, P)$

$$
\begin{aligned}
& M \rightsquigarrow N \\
& \text { run } M \rightsquigarrow \text { run } N \\
& \frac{P \rightsquigarrow Q}{\mathscr{F}[P] \rightsquigarrow \mathscr{F}[Q]} \\
& \mathscr{F}::=[]|\mathscr{F}\|Q \mid \quad P\| \mathscr{F} \\
& \uparrow \mathrm{op}(V, \mathscr{F}) \mid \quad \downarrow \mathrm{op}(V, \mathscr{F})
\end{aligned}
$$

run $(\uparrow \operatorname{op}(V, M)) \rightsquigarrow \uparrow \operatorname{op}(V$, run $M)$

$$
\begin{aligned}
& \uparrow \operatorname{op}(V, P) \| Q \leadsto \uparrow \operatorname{op}(V, P \| \downarrow \mathrm{op}(V, Q)) \\
& P \| \uparrow \operatorname{op}(V, Q) \rightsquigarrow \uparrow \operatorname{op}(V, \downarrow \operatorname{op}(V, P) \| Q)
\end{aligned}
$$

\downarrow op $(V, \operatorname{run} M) \rightsquigarrow$ run $(\downarrow$ op $(V, M))$ $\downarrow \mathrm{op}(V, P \| Q) \rightsquigarrow \downarrow \mathrm{op}(V, P) \| \downarrow \mathrm{op}(V, Q)$
$\downarrow \mathrm{op}\left(V, \uparrow \mathrm{op}^{\prime}(W, P)\right) \rightsquigarrow \uparrow \mathrm{op}^{\prime}(W, \downarrow \mathrm{op}(V, P))$
demo

demo

$$
\frac{M_{i} \rightsquigarrow M_{i}^{\prime}}{M_{1}\|\cdots\| M_{i}\|\cdots\| M_{n} \rightsquigarrow M_{1}\|\cdots\| M_{i}^{\prime}\|\cdots\| M_{n}}
$$

demo

$$
\begin{gathered}
\frac{M_{i} \rightsquigarrow M_{i}^{\prime}}{M_{1}\|\cdots\| M_{i}\|\cdots\| M_{n} \rightsquigarrow M_{1}\|\cdots\| M_{i}^{\prime}\|\cdots\| M_{n}} \\
M_{1}\|\cdots\| \uparrow \operatorname{op}\left(V, M_{i}\right)\|\cdots\| M_{n} \\
\rightsquigarrow \downarrow \operatorname{op}\left(V, M_{1}\right)\left\|\cdots M_{i} \cdots\right\| \downarrow \operatorname{op}\left(V, M_{n}\right)
\end{gathered}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash M: X!(o, l)}{\Gamma \vdash \operatorname{run} M: X!!(o, l)} \\
\frac{\Gamma \vdash P: C \quad \Gamma \vdash Q: D}{\Gamma \vdash P\|Q: C\| D}
\end{gathered}
$$

op $\in \operatorname{signals}(C) \quad \Gamma \vdash V: A_{\mathrm{op}} \quad \Gamma \vdash P: C$

$$
\Gamma \vdash \uparrow \text { op }(V, P): C
$$

$$
\frac{\Gamma \vdash V: A_{\mathrm{op}} \quad \Gamma \vdash P: C}{\Gamma \vdash \downarrow \mathrm{op}(V, P): \mathrm{op} \downarrow C}
$$

$$
\begin{aligned}
\mathrm{op} \downarrow(X!!(o, l)) & =X!!(\mathrm{op} \downarrow(o, l)) \\
\mathrm{op} \downarrow(C \| D) & =(\mathrm{op} \downarrow C) \|(\mathrm{op} \downarrow D)
\end{aligned}
$$

progress

 $\vdash P: C$$$
\Longrightarrow P \leadsto P^{\prime} \quad \vee \quad P \text { is final }
$$

$$
\begin{gathered}
\Gamma \vdash P: C \wedge \wedge P_{\rightsquigarrow} P^{\prime} \\
\Longrightarrow \Gamma \vdash P^{\prime}: C \\
\text { preservation }
\end{gathered}
$$

progress

 $\vdash P: C$$$
\Longrightarrow P \leadsto P^{\prime} \quad \vee \quad P \text { is final }
$$

$$
\begin{gathered}
\Gamma \vdash P: C \wedge \wedge \quad P \rightsquigarrow P^{\prime} \\
\Longrightarrow \Gamma \vdash P^{\prime}: C \\
\text { preservation }
\end{gathered}
$$

$$
\begin{gathered}
\text { progress } \\
\vdash P: C \\
\Longrightarrow P \leadsto P^{\prime} \quad \vee \quad P \text { is final }
\end{gathered}
$$

$$
\begin{gathered}
\Gamma \vdash P: C \wedge \wedge P \leadsto P^{\prime} \\
\Longrightarrow \Gamma \vdash P^{\prime}: C \\
\text { preservation }
\end{gathered}
$$

\uparrow op $(V, P) \| Q \leadsto \uparrow$ op $(V, P \| \downarrow$ op $(V, Q))$

additional effects of Eriggered handlers
\uparrow op $(V, P) \| Q \leadsto \uparrow$ op $(V, P \| \downarrow$ op $(V, Q))$

$$
X!!(o, l) \sim X!!(o, l)
$$

$X!$!ops $\downarrow(o, l) \sim X!$!ops $\downarrow(\mathrm{op} \downarrow(o, l))$

$$
\frac{C \leadsto C^{\prime} \quad D \leadsto D^{\prime}}{C\left\|D \leadsto C^{\prime}\right\| D^{\prime}}
$$

progress

 $\vdash P: C$$$
\Longrightarrow P \leadsto P^{\prime} \quad \vee \quad P \text { is final }
$$

$$
\begin{aligned}
& \Gamma \vdash P: C \quad \wedge \quad P \leadsto P^{\prime} \\
& \exists C^{\prime} \cdot C \leadsto C^{\prime} \wedge \quad \Gamma \vdash P^{\prime}: C^{\prime} \\
& \text { preservation }
\end{aligned}
$$

progress

 $\vdash P: C$$$
\Longrightarrow P \leadsto P^{\prime} \quad \vee \quad P \text { is final }
$$

$$
\begin{aligned}
& \Gamma \vdash P: C \quad \wedge \quad P \rightsquigarrow P^{\prime} \\
& \exists C^{\prime} . C \leadsto C^{\prime} \quad \wedge \quad \Gamma \vdash P^{\prime}: C^{\prime} \\
& \quad \text { preservation }
\end{aligned}
$$

progress $\vdash P: C$

$$
\Longrightarrow P \rightsquigarrow P^{\prime} \quad \vee \quad P \text { is final }
$$

$$
\Gamma \vdash P: C \quad \wedge \quad P \rightsquigarrow P^{\prime}
$$

$$
\begin{aligned}
& \exists C^{\prime} . C \leadsto C^{\prime} \wedge \quad \Gamma \vdash P^{\prime}: C^{\prime} \\
& \text { preservation }
\end{aligned}
$$

PROCESSES

run $M \quad P \| Q$
 \uparrow op $(V, P) \quad \downarrow \mathrm{op}(V, P)$

EXTENSIONS

$$
\mathscr{C} \sqsubseteq l(\mathrm{op}) \quad \Gamma, p:\langle X\rangle \vdash N: Y!(o, l)
$$

$$
\Gamma, x: A_{\mathrm{op}}, r: 1 \rightarrow\langle X\rangle!(\varnothing,\{\mathrm{op} \mapsto \mathscr{C}\}) \vdash M:\langle X\rangle!\mathscr{C}
$$

$\Gamma \vdash$ promise (op $x r \mapsto M)$ as p in $N: Y!(o, \iota)$
\downarrow op $(V$, promise (op $x r \mapsto M)$ as p in N) \rightsquigarrow let $p=M[V / x, R / r]$ in $\downarrow \mathrm{op}(V, N)$
where $R=$ fun ()\mapsto promise $(\mathrm{op} x r \mapsto M)$ as p in return p
promise (op $x \mapsto M)$ as p in $\uparrow \mathrm{op}^{\prime}(V, N)$ $\leadsto \uparrow \mathrm{op}^{\prime}(V$, promise $(\mathrm{op} x \mapsto M)$ as p in $N)$
promise (op $x \mapsto M)$ as p in $\uparrow \mathrm{op}^{\prime}(V, N)$ $\leadsto \uparrow \mathrm{op}^{\prime}(V$, promise $(\mathrm{op} x \mapsto M)$ as p in $N)$
promise (op $x \mapsto M)$ as p in $\uparrow \mathrm{op}^{\prime}(V, N)$ $\leadsto \uparrow \mathrm{op}^{\prime}(V$, promise $(\mathrm{op} x \mapsto M)$ as p in $N)$

PROUEETMTMRLESMTH ESHIPETROUPISRTM PATOLDS

TFYOUR TYPE SYSTEM AFSTAGIBRUMOIDS TO GROUND WMES

$$
\frac{\mathrm{op} \in o \quad}{} \quad \Gamma \vdash V: A_{\mathrm{op}} \quad \Gamma \vdash M: X!(o, l)
$$

$$
\begin{aligned}
& A, B::=\mathrm{b}\left|\begin{array}{l|l|l|l}
& 1 & 0 & A \times B
\end{array}\right| A+B \\
& X, Y::=A|X \times Y| X+Y \mid \\
& X \rightarrow Y!(o, l) \mid \quad\langle X\rangle
\end{aligned}
$$

$$
\begin{array}{rl}
A, B::=\mathrm{b} & 1 \mid \\
X, Y::=A & |X \times Y| \\
& |X+Y| \\
& X \rightarrow Y!(o, l)|\langle X\rangle|[X]
\end{array}
$$

$$
\frac{\mathrm{op} \in o \quad}{} \quad \Gamma \vdash V: A_{\mathrm{op}} \quad \Gamma \vdash M: X!(o, l)
$$

$\frac{X \text { is mobile or } \square \notin \Gamma^{\prime}}{\Gamma, x: X, \Gamma^{\prime} \vdash x: X} \quad \frac{\Gamma, \square \vdash V: X}{\Gamma \vdash[V]:[X]}$

$$
\frac{\Gamma \vdash V:[X] \quad \Gamma, x: X \vdash M: Y!\mathscr{C}}{\Gamma \vdash \text { unbox } V \text { as }[x] \text { in } M: Y!\mathscr{C}}
$$

unbox [V] as $[x]$ in $M \leadsto M[V / x]$

run $(\operatorname{spawn}(M, N)) \rightsquigarrow \operatorname{run} M \| \operatorname{run} N$

$$
\frac{\Gamma, ■ \vdash M: X!\mathscr{C} \quad \Gamma \vdash N: Y!\mathscr{C}^{\prime}}{\Gamma \vdash \operatorname{spawn}(M, N): Y!\mathscr{C}^{\prime}}
$$

$$
\begin{aligned}
& \text { let } x=\left(\operatorname{spawn}\left(M_{1}, M_{2}\right)\right) \text { in } N \\
& \rightsquigarrow \operatorname{spawn}\left(M_{1} \text {, let } x=M_{2} \text { in } N\right)
\end{aligned}
$$

promise (op $x r \mapsto M$) as p in spawn $\left(N_{1}, N_{2}\right)$ $\rightsquigarrow \operatorname{spawn}\left(N_{1},\left(\right.\right.$ promise $($ op $x r \mapsto M)$ as p in $\left.N_{2}\right)$)
\downarrow op $(V, \operatorname{spawn}(M, N))$
$\rightsquigarrow \operatorname{spawn}(M, \downarrow$ op $(V, N))$

$$
\begin{aligned}
& \text { let } x=\left(\operatorname{spawn}\left(M_{1}, M_{2}\right)\right) \text { in } N \\
& \text { algebraicily }
\end{aligned}
$$

promise (op $x r \mapsto M$) as p in spawn $\left(N_{1}, N_{2}\right)$ \leadsto spawn $\left(N_{1}\right.$, (promise (op $\left.x r \mapsto M\right)$ as p in $\left.N_{2}\right)$) commutakivity
\downarrow op $(V, \operatorname{spawn}(M, N))$
$\xrightarrow{3} \operatorname{spawn}(M, \downarrow$ op $(V, N))$
"handling"
demo

EXTENSIONS

TNTARESTAD?

Asynchronous Effects

DANEL AHMAN and MATIJA PRETNAR, University of Ljubljana, Slovenia
We explore asynchronous programming with algebraic effects. We complement their conventional synchronous treatment by showing how to naturally also accommodate asynchrony within them, namely, by decoupling the execution of operation calls into signalling that an operation's implementation needs to be executed, and interrupting a running computation with the operation's result, to which the computation can react by installing interrupt handlers. We formalise these ideas in a small core calculus, called $\lambda_{æ}$. We demonstrate the flexibility of $\lambda_{æ}$ using examples ranging from a multi-party web application, to preemptive multi-threading, to remote function calls, to a parallel variant of runners of algebraic effects. In addition, the paper is accompanied by a formalisation of $\lambda_{æ}$'s type safety proofs in AGDA, and a prototype implementation of λ_{∞} in OCAML. CCS Concepts: • Theory of computation \rightarrow Concurrency; Program constructs; Program semantics. Additional Key Words and Phrases: algebraic effects, asynchrony, concurrency, interrupt handling, signals. ACM Reference Format:
Danel Ahman and Matija Pretnar. 2021. Asynchronous Effects. Proc. ACM Program. Lang. 5, POPL, Article 24 (January 2021), 28 pages. https://doi.org/10.1145/3434305

1 INTRODUCTION

Effectful programming abstractions are at the heart of many modern general-purpose programming languages. They can increase expressiveness by giving access to first-class continuations, but often simply help users to write cleaner code, e.g., by avoiding having to manage a program's memory explicitly in state-passing style, or getting lost in callback hell while programming asynchronously.

An increasing number of language designers and programmers are starting to embrace algebraic effects, where one uses algebraic operations [Plotkin and Power 2002] and effect handlers [Plotkin and Pretnar 2013] to uniformly and user-definably express a wide range of effectful behaviour, ranging from basic examples such as state, rollbacks, exceptions, and nondeterminism [Bauer, and Pretnar 2015], to advanced applications in concurrency [Dolan et al. 2018] and statistical probabilistic programming [Bingham et al. 2019], and even quantum computation [Staton 2015]. by nature. In it effects are invples, the conventional treatment of algebraic effects is synchronous by nature. In it effects are invoked by placing operation calls in one's code, which then propagate outwards until they trigger the actual effect, finally yielding a result to the rest of the computation that has been waiting the whole time. While blocking the computation is indeed sometimes needed e.g., in the presence of general effect handlers that can execute their continuation any number of times, it forces all uses of algebraic effects to be synchronous, even when this is not necessary e when the effect involves executing a remote query to which a response is not needed (immediately). Motivated by the recent interest in the combination of asynchrony and algebraic effects [Dolan et al. 2018; Leijen 2017], we explore what it takes (in terms of language design, safe programming abstractions, and a self-contained core calculus) to accompany the synchronous treatment of Authors' address: Danel Ahman, danel.ahman@fmf.uni-lj.si; Matija Pretnar, matija.pretnar@fmf.uni-lj.si, University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, Ljubljana, SI-1000, Slovenia.

(c) ${ }^{\text {B }}$

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2021 Copyright held by the owner/author(s).
2475-1421/2021/1-ART24
2475-1421/2021/1-ART24
https://doi.org/10.1145/3434305

HIGHER-ORDER ASYNCHRONOUS EFFECTS*

$$
\text { DANEL AHMAN © }{ }^{a} \text { AND MATIJA PRETNAR } \oplus^{a, 4}
$$

${ }^{a}$ University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, SI-1000 Ljubljana,
Slovenia Slovenia
e-mail address: danel.ahman@fmf.uni-lj.si, matija.pretnar@fmf.uni-lj.si
${ }^{b}$ Institute of Mathematics, Physics and Mechanics, Jadranska 21, SI-1000 Ljubljana, Slovenia
AbSTRACT. We explore asynchronous programming with algebraic effects. We complement asynchrony within them, namely, by decoupling the how to naturally also accommodate asynchrony within them, namely, by decoupling the execution of operation calls into
signalling that an operation's implementation needs to running computation with the operation's result, to which thecuted, and interrupting a installing interrupt handlers. We formalise these ideas in a computation can react by $\lambda_{æ}$. We demonstrate the flexibility of λ_{∞} using examples ranging from a multius, called application, to preemptive multi-threading, to remote function calls, to a parallel variant of runners of algebraic effects. In addition, the paper is accompanied by a formalisation of $\lambda_{æ}$'s type safety proofs in AGDA, and a prototype implementation of by a formalisatio λ_{x} in OCAM

1. Introduction

Effectful programming abstractions are at the heart of many modern general-purpose programming languages. They can increase expressiveness by giving access to first-class continuations, program's memory explicitly in stite cleaner code, e.g., by avoiding having to manage a program's memory explicitly in state-passing style, or getting lost in callback hell while programming asynchronously

An increasing number of language designers and programmers are starting to embrace algebraic effects, where one uses algebraic operations [PP02] and effect handlers [PP13] to uniformly and user-definably express a wide range of effectful behaviour, ranging from basic examples such as state, rollbacks, exceptions, and nondeterminism [BP15], to advanced applications in concurrency $\left[\mathrm{DEH}^{+} 18\right]$ and statistical probabilistic programming [BCJ $\left.\mathrm{B}^{+} 19\right]$ applications in concurrency $\left[\mathrm{DEH}^{+} 18\right]$ and statistical probabilistic programming $\left[\mathrm{BCJ}^{+} 19\right]$
and even quantum computation [Sta15]. and even quantum computation [Sta15].
While covering many examples, the conventional treatment of algebraic effects is synchronous by nature. In it effects are invoked by placing operation calls in one's code, which

> Key words and phrases: algebraic effects, asynchrony, concurrency, interrupt handling, signals. * This paper is an extended version of our previous work [AP21]. which simnlifioc the

* This paper is an extended version of our previous work [AP21], which simplifies the meta-theory, remove the reliance on general recursion for reinstallable interrupt handlers, extends the calculus with higher-order This project has received funding from the Euro strengthens the examples of application.
programme under the Marie Skłodowska-Curie grant agreem Union's Horizon 2020 research and innovation work supported by the Air Force Office of Scientific Reement No 834146 . This material is based upon FA9550-21-1-0024.

U Insights

$\mathfrak{\%} 4$ branches $\bigodot 0$ tags		Go to file	file Code -
matijapretnar Bump OCaml \& ocamlformat version		\checkmark f28a4ba on Nov 16, 2022	(1) 43 commits
[. github/workflows	Bump OCaml \& ocamlformat version		7 months ago
- examples	Initial commit		3 years ago
- src	Bump OCaml \& ocamlformat version		7 months ago
- tests	Check for well-formed type definitions		2 years ago
- web	Sort out names		2 years ago
(0).gitignore	Sort out names		2 years ago
- .ocamlformat	Bump OCaml \& ocamlformat version		7 months ago
(1) Makefile	Simplify test folder		2 years ago
(1) README.md	Bump OCaml \& ocamlformat version		7 months ago
\square dune-project	Add initial cram tests setup		2 years ago

README.md

Millet

Do you, like me, test theoretical programming language concepts by building your own programming language? Do you, like me, do it by copying and modifying your most recent language because you are too lazy to build everything from scratch? Do you, like me, end up with a mess? Then Millet is for you. It is a pure ML-like language with simple and modular codebase that you can use as a template for your next language.

How to install and run Millet?

Install dependencies by

opam install menhir ocaml-vdom ocamlformat

A ML-like pure functional language that can be used as a template for creating your own language
\odot matija.pretnar.info/millet/
n Readme
© 19 stars

- 3 watching

ย 0 forks
Report repository

Releases

No releases published

Packages
No packages published

Contributors 2

matijapretnar Matija Pretna
zputrle Žiga Putrle

Languages

- OCaml 90.8%

Perl 8.4%
Other 0.8\%

FUTURE WORK

EFFICIENT

INTERPRETER

EFFECT-AWARE

OPTIMISATIONS

DENOTATIONAL SEMANTICS

SCOPED? HANDLERS

QUESTIONS?

