
STATE OF EFF

Matija Pretnar
University of Ljubljana, Slovenia

2010
EFF 1.0

I was trying to reconstruct the history of Eff, and as far as I recall, the first version appeared in 2010.

effect state x: operation lookup ():
 (lambda s: yield s s)

 operation update s_new:
 (lambda s: yield () s_new)

 return y: (lambda s: (s, y))
 finally f: f x

It waas announced on Andrej’s blog, 13 years ago almost to a day. Two interesting notes: it’s name was written in lower case, and it used a Python-like syntax.

2011
EFF 2.0

On our train ride back from the Domains workshop in Swansea, Andrej and I realised that Eff fits much better into an ML family.

Programming with Algebraic E↵ects and Handlers

Andrej Bauera, Matija Pretnara

aFaculty of Mathematics and Physics, University of Ljubljana, Slovenia

Abstract

E↵ is a programming language based on the algebraic approach to computational ef-fects, in which e↵ects are viewed as algebraic operations and e↵ect handlers as ho-momorphisms from free algebras. E↵ supports first-class e↵ects and handlers throughwhich we may easily define new computational e↵ects, seamlessly combine existingones, and handle them in novel ways. We give a denotational semantics of E↵ and dis-cuss a prototype implementation based on it. Through examples we demonstrate howthe standard e↵ects are treated in E↵ , and how E↵ supports programming techniquesthat use various forms of delimited continuations, such as backtracking, breadth-firstsearch, selection functionals, cooperative multi-threading, and others.

Introduction

E↵ is a programming language based on the algebraic approach to e↵ects, in whichcomputational e↵ects are modelled as operations of a suitably chosen algebraic the-ory [12]. Common computational e↵ects such as input, output, state, exceptions, andnon-determinism, are of this kind. Continuations are not algebraic [4], but they turn outto be naturally supported by E↵ as well. E↵ect handlers are a related notion [14, 19]which encompasses exception handlers, stream redirection, transactions, backtracking,and many others. These are modelled as homomorphisms induced by the universalproperty of free algebras.
Each algebraic theory gives rise to a monad [1, 11], although the operations cannotbe reconstructed from it. Algebraic theories have their own virtues, though. E↵ects arecombined more easily than monads [5], and the interaction between e↵ects and han-dlers o↵ers new ways of programming. An experiment in the design of a programminglanguage based on the algebraic approach therefore seems warranted.Philip Wadler once opined [21] that monads as a programming concept would nothave been discovered without their category-theoretic counterparts, but once they were,programmers could live in blissful ignorance of their origin. Because the same holdsfor algebraic e↵ects and handlers, we streamlined the paper for the benefit of program-mers, trusting that connoisseurs will recognize the connections with the underlyingmathematical theory.

Email addresses: andrej@andrej.com (Andrej Bauer), matija@pretnar.info (Matija Pretnar)

Preprint submitted to Elsevier November 12, 2013

type 'a ref = effect
 operation lookup: unit -> 'a

 operation update: 'a -> unit

end

let state r x = handler
 | r#lookup () k -> (fun s -> k s s)

 | r#update s' k -> (fun s -> k () s')

 | val y -> (fun s -> (y, s))

 | finally f -> f x

Eff 2.0 is what appeared in the “Programming with Algebraic Effects and Handlers” paper. At this point, Eff featured dynamic generation of effect instances, inspired by
how references are created in OCaml.

2012
EFF 3.0 ?

After that point, the versioning becomes much more confusing. Version 3.0 appeared some time after that, but I do not know what the main difference from 2.0 was.
So let’s stick to chronological history from now onwards.

2013
EFFECT SYSTEM

In 2013, Eff got a subtyping-based effect system.

Logical Methods in Computer Science
Vol. 10(3:21)2014, pp. 1–43
www.lmcs-online.org Submitted Dec. 5, 2013

Published Sep. 12, 2014

INFERRING ALGEBRAIC EFFECTS

MATIJA PRETNAR

Faculty of Mathematics and Physics, University of Ljubljana, Sloveniae-mail address: matija@pretnar.info

Abstract. We present a complete polymorphic effect inference algorithm for an ML-stylelanguage with handlers of not only exceptions, but of any other algebraic effect such asinput & output, mutable references and many others.
Our main aim is to offer the programmer a useful insight into the effectful behaviour ofprograms. Handlers help here by cutting down possible effects and the resulting lengthyoutput that often plagues precise effect systems. Additionally, we present a set of meth-ods that further simplify the displayed types, some even by deliberately hiding inferredinformation from the programmer.

Though Haskell [10] fans may not think it is better to write impure programs in ML [18],they do agree it is easier. You can insert a harmless printout without rewriting the restof the program, and you can combine multiple effects without a monad transformer. Thisflexibility comes at a cost, though —ML types offer no insight into what effects may happen.The suggested solution is to use an effect system [16, 29, 4, 31, 33, 3, 27], which enrichesexisting types with information about effects.
An effect system can play two roles: it can be descriptive and inform about potentialeffects, and it can be prescriptive and limit the allowed ones. In this paper, we focus onthe former. It turns out that striking a balance between expressiveness and simplicity of adescriptive effect system is hard. One of the bigger problems is that effects tend to pile up,and if the effect system takes them all into account, we are often left with a lengthy outputlisting every single effect there is.
In this paper, we present a complete inference algorithm for an expressive and simpledescriptive polymorphic effect system of Eff [2] (freely available at http://eff-lang.org),an ML-style language with handlers of not only exceptions, but of any other algebraiceffect [22] such as input & output, non-determinism, mutable references and many oth-ers [23, 2]. Handlers prove to be extremely versatile and can express stream redirection,transactional memory, backtracking, cooperative multi-threading, delimited continuations,and, like monads, give programmers a way to define their own. And as handlers eliminateeffects, they make the effect system non-monotone, which helps with the above issue of asnowballing output.

2012 ACM CCS: [Theory of computation]: Semantics and reasoning—Program reasoning—Programanalysis.
Key words and phrases: algebraic effects, effect handlers, effect inference, effect system.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(3:21)2014

c© Matija Pretnar
CC© Creative Commons

Its inference algorithm was constraint based and used a variant of Francois Pottier’s garbage collection.

2015-2016
EFFICIENT COMPILATION

In 2015, I visited Tom Schrijvers in Leuven, and we started looking at efficient evaluation of handlers.

effect Put: int -> unit
effect Get: unit -> int

let rec loop n =
 if n = 0 then () else
 perform (Put (perform (Get ()) + 1));
 loop (n - 1)

let state_handler = handler
 | effect (Put s') k -> (fun _ -> k () s')
 | effect (Get ()) k -> (fun s -> k s s)
 | _ -> (fun s -> s)

let main n =
 (with state_handler handle loop n) 0

let main n =
 let rec state_handler_loop m s =
 if m = 0 then s
 else state_handler_loop (m - 1) (s + 1)
 in
 state_handler_loop n 0

Tom’s idea was to do source-level optimisations of Eff code and then to compile it down to OCaml using some sort of a monadic embedding (OCaml didn’t have
effects at that point yet).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

E�icient Compilation of Algebraic E�ects and Handlers

21

Pure
Latent

Incr
State

0

50

100 100
100

100
100

78.5

74.3

56

34

35.4
37.4

62.3
85

2.4

2
5.5

3.3

2.3

1.9
3.8

2.3Loop program variations

Pe
rc
en
ta
ge Basic

Opt
Pure

PureOpt
Native

Fig. 14. Relative run-times of Loops example

let rec (>>=) (c : �a computation) (f : �a -> �b computation) : �b computation =

match c with
| Return x -> f x| Call (op , x, k) -> Call (op, x, (fun y -> (k y) >>= f))

8 EVALUATION
We evaluate the e�ectiveness of our optimizing compiler for E�� on a number of benchmarks. First, we compare our

di�erent compilation schemes with hand-wri�en OC��� code. Then, we measure our compiler’s performance against

other OC���-based implementations of algebraic e�ects and handlers. All benchmarks were run on a MacBook Pro

with an 2.5 GHz Intel Core I7 processor and 16 GB 1600 MHz DDR3 RAM running Mac OS 10.12.3.
8.1 E�� versus OC���
Our first evaluation, in Fig. 14, considers four di�erent variations on the looping program from Section 2: 1) Pure

is version without side-e�ects, 2) Latent contains an operation that is never called during the execution of the

benchmark, 3) Incr calls a single increment operation that increments an implicit state, 4) is the version of Section 2

that increments the implicit state with the Get and Put operations. We compile these programs in four di�erent ways:

1) basic compilation mode without any optimization (Basic), 2) purity-aware compilation (Pure), 3) source-to-source

optimizations (Opt), 4) the combination of the previous two. Finally, we compare these di�erent versions against

hand-wri�en (Native) OC��� code: 1) a pure loop, 2) a latent OC��� exception, 3) a reference cell increment, and 4) a

reference cell read followed by a write. The programs were compiled with version 4.02.2 of the OC��� compiler.

Figure 14 shows the time relative to the Basic version for running each of the 20 programs for 10,000 iterations. The

results show a substantial gap between the basic compilation scheme and the hand-wri�en OC���, in the range of

25⇥–50⇥. The source-to-source transformations and purity-aware code generation each have individually varying

success in reducing the gap to a smaller, but still significant level. It is only when the two optimizations are combined

that we obtain performance that is competitive with the hand-wri�en versions (1⇥-1.5⇥). In particular, the combined

optimizations succeed in eliminating all trace of the handlers and free monad from the generated OC��� code.Manuscript submi�ed to ACM

Our initial results were promising, reaching performance of hand-written OCaml code.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

E�icient Compilation of Algebraic E�ects and Handlers

21

Pure
Latent

Incr
State

0

50

100 100
100

100
100

78.5

74.3

56

34

35.4
37.4

62.3
85

2.4

2
5.5

3.3

2.3

1.9
3.8

2.3Loop program variations

Pe
rc
en
ta
ge Basic

Opt
Pure

PureOpt
Native

Fig. 14. Relative run-times of Loops example

let rec (>>=) (c : �a computation) (f : �a -> �b computation) : �b computation =

match c with
| Return x -> f x| Call (op , x, k) -> Call (op, x, (fun y -> (k y) >>= f))

8 EVALUATION
We evaluate the e�ectiveness of our optimizing compiler for E�� on a number of benchmarks. First, we compare our

di�erent compilation schemes with hand-wri�en OC��� code. Then, we measure our compiler’s performance against

other OC���-based implementations of algebraic e�ects and handlers. All benchmarks were run on a MacBook Pro

with an 2.5 GHz Intel Core I7 processor and 16 GB 1600 MHz DDR3 RAM running Mac OS 10.12.3.
8.1 E�� versus OC���
Our first evaluation, in Fig. 14, considers four di�erent variations on the looping program from Section 2: 1) Pure

is version without side-e�ects, 2) Latent contains an operation that is never called during the execution of the

benchmark, 3) Incr calls a single increment operation that increments an implicit state, 4) is the version of Section 2

that increments the implicit state with the Get and Put operations. We compile these programs in four di�erent ways:

1) basic compilation mode without any optimization (Basic), 2) purity-aware compilation (Pure), 3) source-to-source

optimizations (Opt), 4) the combination of the previous two. Finally, we compare these di�erent versions against

hand-wri�en (Native) OC��� code: 1) a pure loop, 2) a latent OC��� exception, 3) a reference cell increment, and 4) a

reference cell read followed by a write. The programs were compiled with version 4.02.2 of the OC��� compiler.

Figure 14 shows the time relative to the Basic version for running each of the 20 programs for 10,000 iterations. The

results show a substantial gap between the basic compilation scheme and the hand-wri�en OC���, in the range of

25⇥–50⇥. The source-to-source transformations and purity-aware code generation each have individually varying

success in reducing the gap to a smaller, but still significant level. It is only when the two optimizations are combined

that we obtain performance that is competitive with the hand-wri�en versions (1⇥-1.5⇥). In particular, the combined

optimizations succeed in eliminating all trace of the handlers and free monad from the generated OC��� code.Manuscript submi�ed to ACM

💩
But we ended up having too little examples for a thorough evaulation since the effect system was very fragile and every tweak either made our compilation too
conservative and thus too slow, or too agressive and ill-typed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

E�icient Compilation of Algebraic E�ects and Handlers

21

Pure
Latent

Incr
State

0

50

100 100
100

100
100

78.5

74.3

56

34

35.4
37.4

62.3
85

2.4

2
5.5

3.3

2.3

1.9
3.8

2.3Loop program variations

Pe
rc
en
ta
ge Basic

Opt
Pure

PureOpt
Native

Fig. 14. Relative run-times of Loops example

let rec (>>=) (c : �a computation) (f : �a -> �b computation) : �b computation =

match c with
| Return x -> f x| Call (op , x, k) -> Call (op, x, (fun y -> (k y) >>= f))

8 EVALUATION
We evaluate the e�ectiveness of our optimizing compiler for E�� on a number of benchmarks. First, we compare our

di�erent compilation schemes with hand-wri�en OC��� code. Then, we measure our compiler’s performance against

other OC���-based implementations of algebraic e�ects and handlers. All benchmarks were run on a MacBook Pro

with an 2.5 GHz Intel Core I7 processor and 16 GB 1600 MHz DDR3 RAM running Mac OS 10.12.3.
8.1 E�� versus OC���
Our first evaluation, in Fig. 14, considers four di�erent variations on the looping program from Section 2: 1) Pure

is version without side-e�ects, 2) Latent contains an operation that is never called during the execution of the

benchmark, 3) Incr calls a single increment operation that increments an implicit state, 4) is the version of Section 2

that increments the implicit state with the Get and Put operations. We compile these programs in four di�erent ways:

1) basic compilation mode without any optimization (Basic), 2) purity-aware compilation (Pure), 3) source-to-source

optimizations (Opt), 4) the combination of the previous two. Finally, we compare these di�erent versions against

hand-wri�en (Native) OC��� code: 1) a pure loop, 2) a latent OC��� exception, 3) a reference cell increment, and 4) a

reference cell read followed by a write. The programs were compiled with version 4.02.2 of the OC��� compiler.

Figure 14 shows the time relative to the Basic version for running each of the 20 programs for 10,000 iterations. The

results show a substantial gap between the basic compilation scheme and the hand-wri�en OC���, in the range of

25⇥–50⇥. The source-to-source transformations and purity-aware code generation each have individually varying

success in reducing the gap to a smaller, but still significant level. It is only when the two optimizations are combined

that we obtain performance that is competitive with the hand-wri�en versions (1⇥-1.5⇥). In particular, the combined

optimizations succeed in eliminating all trace of the handlers and free monad from the generated OC��� code.Manuscript submi�ed to ACM

💩
let state x = handler
 | #lookup () k -> (fun s -> k s s)

 | #update s' k -> (fun s -> k () s')

 | val y -> (fun s -> (y, s))

 | finally f -> f x

The first step in resolving the mess was getting rid of instances (since one could use the generativity of modules (which Eff still doesn’t have)), though even that did not
help.

2017-2019
EXPLICIT SUBTYPING

The next step was to change all the implicit subtyping coercions in Eff into explicit ones, and this was done with the help of Tom Schrijvers and his students, mostly Amr
Hany Saleh and Georgios Karachalias.

let apply_if p f x =
 if p x then
 f x
 else
 x

For example, take the following Eff function.

2 F. KOPRIVEC AND M. PRETNAR

• A number of progressive phases for simplification of constraints (Section 4).
• A proof that the algorithm preserves the denotational semantics (Section 5) for any set of

free constraints (Section 6).
• An implementation of the algorithm in a prototype language Eff and an evaluation of the

impact it has on the code size and runtime (Section 7).
We conclude by discussing related and future work.

1. Overview

1.1. Explicit polymorphism. Our work builds on an existing optimizing compiler, which
compiles Eff [?], a ML-like language with native support for algebraic effects and handlers,
into pure OCaml code without handlers. From the latest version onwards, OCaml also
offers native support for handlers, but unlike Eff, restricts them to continuations that may
be resumed at most once. Ignoring effect annotations for a bit, let us consider a simple
polymorphic function that applies a given function to its argument only if a given predicate
is satisfied. In Eff, one would write it as:Why aren’t

keywords in
bold? -
texttt causes
probems

let apply_if p f x = if p x then f x else x

The above function is first translated to Eff’s core language CoreEff, which is a fine-grain
call-by-value language [?], meaning it distinguishes values and computations. For example,
since p x is a computation, and a conditional statement expects a boolean value, we must
explicitly sequence the two computations and get:

fun p 7! return (fun f 7! return (fun x 7! (

do b p x;

if b then f x else return x

)))

Next, the inference algorithm infers the most general type and makes it explicit by annotating
variables with types and certain terms with type coercions (highlighted in gray):

fun (p : ↵1 ! bool) 7! return (

fun (f : ↵2 ! ↵3) 7! return (

fun (x : ↵4) 7! (

do b p (x B !1);

if b then

(f (x B !2)) B !3

else

return (x B !4)

)))

In general, the type ↵4 of x does not have to be the same as the argument type ↵1 of p, it
only needs to be its subtype, thus it needs to be cast by some type coercion !1 : ↵4 ↵1. A
similar situation occurs with f and !2 : ↵4 ↵2. Finally, the result of f needs to be coerced

In fine-grain call-by-value, this gets elaborated to the following function with explicit binds and returns.

2 F. KOPRIVEC AND M. PRETNAR

• A number of progressive phases for simplification of constraints (Section 4).
• A proof that the algorithm preserves the denotational semantics (Section 5) for any set of

free constraints (Section 6).
• An implementation of the algorithm in a prototype language Eff and an evaluation of the

impact it has on the code size and runtime (Section 7).
We conclude by discussing related and future work.

1. Overview

1.1. Explicit polymorphism. Our work builds on an existing optimizing compiler, which
compiles Eff [?], a ML-like language with native support for algebraic effects and handlers,
into pure OCaml code without handlers. From the latest version onwards, OCaml also
offers native support for handlers, but unlike Eff, restricts them to continuations that may
be resumed at most once. Ignoring effect annotations for a bit, let us consider a simple
polymorphic function that applies a given function to its argument only if a given predicate
is satisfied. In Eff, one would write it as:Why aren’t

keywords in
bold? -
texttt causes
probems

let apply_if p f x = if p x then f x else x

The above function is first translated to Eff’s core language CoreEff, which is a fine-grain
call-by-value language [?], meaning it distinguishes values and computations. For example,
since p x is a computation, and a conditional statement expects a boolean value, we must
explicitly sequence the two computations and get:

fun p 7! return (fun f 7! return (fun x 7! (

do b p x;

if b then f x else return x

)))

Next, the inference algorithm infers the most general type and makes it explicit by annotating
variables with types and certain terms with type coercions (highlighted in gray):

fun (p : ↵1 ! bool) 7! return (

fun (f : ↵2 ! ↵3) 7! return (

fun (x : ↵4) 7! (

do b p (x B !1);

if b then

(f (x B !2)) B !3

else

return (x B !4)

)))

In general, the type ↵4 of x does not have to be the same as the argument type ↵1 of p, it
only needs to be its subtype, thus it needs to be cast by some type coercion !1 : ↵4 ↵1. A
similar situation occurs with f and !2 : ↵4 ↵2. Finally, the result of f needs to be coerced

In the new explicitly annotated version, each variable is assigned a type, and types have to match, which is achieved through coercions. For example, the type α4 of x
doesn’t need to match the argument type α1 of f, but there must be an explicit coercion ω1 : α1 ≤ α4 witnessing the subtyping. Now, all effect information can be read
directly off the syntax.

2019-2020
EEFF

In parallel, a fork of Eff called EEFF appeared.

JFP 30, e13, 27 pages, 2020. c© The Author(s) 2020. Published by Cambridge University Press 1doi:10.1017/S0956796819000212

Local algebraic effect theories
ŽI G A L U KŠIČ AND M A T I J A P R E T N A R†

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia(e-mails: ziga.luksic@fmf.uni-lj.si, matija.pretnar@fmf.uni-lj.si)

Abstract

Algebraic effects are computational effects that can be described with a set of basic operations andequations between them. As many interesting effect handlers do not respect these equations, mostapproaches assume a trivial theory, sacrificing both reasoning power and safety. We present an alter-native approach where the type system tracks equations that are observed in subparts of the program,yielding a sound and flexible logic, and paving a way for practical optimisations and reasoning tools.

1 Introduction
Algebraic effects are computational effects that can be described by a signature of primi-tive operations and a collection of equations between them (Plotkin & Power, 2001, 2003),while algebraic effect handlers are a generalisation of exception handlers to arbitrary alge-braic effects (Plotkin & Pretnar, 2009, 2013). Even though the early work consideredonly handlers that respect equations of the effect theory, a considerable amount of use-ful handlers did not, and the restriction was dropped in most—though not all (Ahman,2017, 2018)—of the later work on handlers (Kammar et al., 2013; Bauer & Pretnar, 2015;Leijen, 2017; Biernacki et al., 2018), resulting in a weaker reasoning logic and imprecisespecifications.

Our aim is to rectify this by reintroducing effect theories into the type system, track-ing equations observed in parts of a program. On one hand, the induced logic allowsus to rewrite computations into equivalent ones with respect to the effect theory, whileon the other hand, the type system enforces that handlers preserve equivalences, furtherspecifying their behaviour. After an informal overview in Section 2, we proceed as follows:
• The syntax of the working language, its operational semantics, and the typing rulesare given in Section 3.
• Determining if a handler respects an effect theory is in general undecidable (Plotkin& Pretnar, 2013), so there is no canonical way of defining such a judgement.Therefore, the typing rules are given parametric to a reasoning logic, and inSection 4, we present some of the most interesting choices.

† This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0326.

9 08 8:2 /5 10 875 71 / .6/: 021 7 1: :1

theory eqn_assoc for {Choice} is

 { . ; z1 : unit -> *, z2 : unit -> *, z3 : unit -> * |-

 Choice((); b. if b then z1 ()
 else Choice((); b'. if b' then z2 () else z3 ()))

 ~
 Choice((); b. if b then Choice((); b'. if b' then z1 () else z2 ())

 else z3 ()) }let to_list : int!eqn_assoc => int list = handler

 | effect Choice _ k -> k true @ k false

 | val x -> [x]

This was done by my PhD student Žiga Lukšič and was based on the work of extending the effect system with equations that the handlers need to satisfy. In EEFF, one
can specify equations that have to hold, but the compiler does not do any checks along the lines of QuickCheck or SMT solving, just prints out the obligations to the
user. If anyone is interested in helping continue this work, let me know!

2020
MAJOR CLEANUP

With the explicit subtyping sorted out, we decided to properly implement it, and this was done mostly in 2020 with the help of my student Filip Koprivec.

let apply (exp1, exp2) =
 match exp1.ty.term with
 | Type.Arrow (ty1, drty2) ->
 assert (Type.equal_ty exp2.ty ty1);
 { term = Apply (exp1, exp2); ty = drty2 }
 | _ -> assert false

One useful technique we used were smart-constructors of typed terms, which raised an assertion fault as soon as some types did not match. This caught countless
bugs in source-level optimizations, which shuffle terms around a lot.

2021
OPTIMIZATIONS

With Eff cleaned up, it was time in 2021 to return to our initial work on optimizations.

EFF OCAMLEXEFF NOEFF
ESOP
2018

JFP
2020

OOPSLA
2021

OOPSLA
2021

This worked smoothly, and the current pipeline is as follows. After desugaring, Eff is first elaborated into an explicitly typed core language. Next, it is translated into an
OCaml-like language that features no native effects, just their monadic reification. On both languages, mostly on the core one, we perform source-level optimizations
that inline handlers, extract pure computations, …

2022-2023
SIMPLIFYING COERCIONS

Our current work focuses on simplifying subtyping coercions.

2 F. KOPRIVEC AND M. PRETNAR

• A number of progressive phases for simplification of constraints (Section 4).
• A proof that the algorithm preserves the denotational semantics (Section 5) for any set of

free constraints (Section 6).
• An implementation of the algorithm in a prototype language Eff and an evaluation of the

impact it has on the code size and runtime (Section 7).
We conclude by discussing related and future work.

1. Overview

1.1. Explicit polymorphism. Our work builds on an existing optimizing compiler, which
compiles Eff [?], a ML-like language with native support for algebraic effects and handlers,
into pure OCaml code without handlers. From the latest version onwards, OCaml also
offers native support for handlers, but unlike Eff, restricts them to continuations that may
be resumed at most once. Ignoring effect annotations for a bit, let us consider a simple
polymorphic function that applies a given function to its argument only if a given predicate
is satisfied. In Eff, one would write it as:Why aren’t

keywords in
bold? -
texttt causes
probems

let apply_if p f x = if p x then f x else x

The above function is first translated to Eff’s core language CoreEff, which is a fine-grain
call-by-value language [?], meaning it distinguishes values and computations. For example,
since p x is a computation, and a conditional statement expects a boolean value, we must
explicitly sequence the two computations and get:

fun p 7! return (fun f 7! return (fun x 7! (

do b p x;

if b then f x else return x

)))

Next, the inference algorithm infers the most general type and makes it explicit by annotating
variables with types and certain terms with type coercions (highlighted in gray):

fun (p : ↵1 ! bool) 7! return (

fun (f : ↵2 ! ↵3) 7! return (

fun (x : ↵4) 7! (

do b p (x B !1);

if b then

(f (x B !2)) B !3

else

return (x B !4)

)))

In general, the type ↵4 of x does not have to be the same as the argument type ↵1 of p, it
only needs to be its subtype, thus it needs to be cast by some type coercion !1 : ↵4 ↵1. A
similar situation occurs with f and !2 : ↵4 ↵2. Finally, the result of f needs to be coerced

Recall that core language features explicit coercions in terms.

let apply_if w1 w2 w3 w4 p f x =
 p (x |> w1) >>= fun b ->
 if b then
 (f (x |> w2)) |> coer_comp w3
 else
 return (x |> w4)

When translating to OCaml, these coercions gain computational meaning (eg. they embed pure values into the monad), and any polymorphic coercion parameters
get translated into additional function arguments. Very simple functions have a handful of such additional arguments, while a quick-sort implementation for example,
already features a couple hundred of them, which is unacceptable.

δ₉

δ₁₀-

ϖ₁₂

δ₃

ϖ₁₀

ϖ₁₆

δ₄

δ₆

ϖ₁

δ₈

ϖ₅

δ₂

δ₁₃+
ϖ₁₅

δ₅

ϖ₂

δ₇

ϖ₃

ϖ₆

ϖ₇

δ₁₁

δ₁₂
ϖ₁₃

ϖ₁₄

ϖ₁₇

δ₁+
ϖ₁₁

Unfortunately, we cannot perform Francois Pottiers garbage collection because that relies on computational irrelevance of coercions and completely removes them. In
our case, coercions form part of terms and have to be replaced rather than removed. Instead we rely on heuristics such as collapsing of cycles, collapsing coercions
between parameters with singualr bounds, … We cannot get rid of all the coercions in general, but we can for example remove all of them in Eff’s standard library or
the quick-sort example.

OPTIMISING SUBTYPING COERCIONS IN
A POLYMORPHIC CALCULUS WITH EFFECTS

FILIP KOPRIVEC a,b AND MATIJA PRETNAR a,b

a University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, SI-1000 Ljubljana,Slovenia

b Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Sloveniae-mail address: filip.koprivec@imfm.si
e-mail address: matija.pretnar@fmf.uni-lj.si

Abstract.
Write abstract.

write thanks

write key-
words

Before
sumbitting,
go through
LMCS check-
list

Introduction

Recent years have seen an increase in the number of programming languages that supportalgebraic effect handlers [PP03, PP13]. With a widespread usage, the need for performanceis becoming ever more important. And there are two main ways for achieving it: . an efficient

check if the
references
are correct

runtime [DWS+15, SDW+21], or an optimising compiler [SBO20, XL21, KKPS21], whichwe focus on in this paper.
Our recent work [KKPS21] has shown how an optimising compiler can take code writtenusing the full flexibility of handlers, infer precise information about which parts of it useeffects and which are pure, and produce code that matches conventional handcrafted one.However, the approach tracks effect information through explicit subtyping coercions [],and for polymorphic functions, these need to be passed around as additional parameters.Since subtyping coercions are inferred automatically, their number grows with the size of theprogram, which drastically reduces the performance. To avoid this, all polymorphic functionsneed to be annotated with particular types, or monomorphised by the compiler, neither ofwhich is a satisfactory solution.
In this paper, we propose an algorithm that drastically, yet soundly, reduces (and oftencompletely eliminates) redundant coercion parameters, leading to a performance comparableto monomorphic code. We start with an overview of the approach (Section 1) and continuewith a specification of our working language (Section 2). Afterwards, we turn to ourcontributions, which are:

• Identifying requirements for a simplification algorithm phase to be correct with respect totyping (Section ??).

Key words and phrases: Computational effects, Optimizing compilation, Polymorphic compilation, Deno-tational semantics.
This material is based upon work supported by the Air Force Office of Scientific Research under awardsnumber FA9550-17-1-0326 and FA9550-21-1-0024.

Preprint submitted to
Logical Methods in Computer Science © F. Koprivec and M. Pretnar

CC� Creative Commons

The correctness of this simplifications is established in a paper that Filip and I are submitting soon to LMCS.

2024-

What are the next steps for Eff?

The answer lies in Millet, a fine-grain call-by-value based ML-like language.

EFF

ÆFF

MILLET

ÆFF++

MILLET++

EFF++

ÆFF+

EFF+

A few years ago, I worked with Danel Ahman on asynchronous effects. To test our ideas, I’ve developed a small prototype language called Æff. I got it by taking Eff,
removing some stuff and adding some new one. Of course, during writing of Æff I corrected some mistakes present in Eff. How to port those changes back to get an
improved version of Eff? What I started is Millet, a template language featuring all the boring but useful things in a language (recursive types, records, interactive loop,
parser, lexer, desugarer, simple type-checker, interpreter, …) which one can fork and add only the interesting bits (handlers, asynchronous operations, …). Eff and Æff
appeared before, and now I am slowly porting them to the point where they can be considered such forks. Now, if Millet gets an additional feature (right now, a couple
of students of mine are developing a module system, a LSP, and a Wasm backend), one can “simply” merge those changes into forks. If you are researching a new
feature and want to try it out, I encourage you to take a look at Millet.

