
EFFECT HANDLERS
&

MATHEMATICALLY INSPIRED
LANGUAGE CONSTRUCTS

Matija Pretnar

This seminar series has covered the past 75 years of control structures

D O C U M E N TS E T M É D I A S

Programme

Voir aussi

Accueil / Chaires actuelles / Xavier Leroy, chaire Sciences du logiciel / Enseignements / Structures de contrôle : de « goto » aux effets
algébriques

08
FÉV
2024

→
14
MAR
2024

SÉMINAIRE

Structures de contrôle : de « goto » aux effets
algébriques

Du jeudi 8 février au
jeudi 14 mars 2024

Voir aussi :
Cours associé•
Xavier Leroy•

Unité de contrôle Jacquard pour métiers à tisser. - © Heinz Nixdorf
MuseumsForum / Braun, Jan (CC BY-NC-SA)

Télécharger le programme pdf (628.92 Ko)

C O U R S 09:30 - 11:00

Naissance des structures de contrôle : du « goto » à la
programmation structurée
Xavier Leroy

25
JAN
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Structures de contrôle avancées : des subroutines
aux coroutines et au parallélisme
Xavier Leroy

01
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Chassez le contrôle... : la programmation déclarative
Xavier Leroy 08

FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Comment concilier parallélisme et contrôle ?
Approches des architectures de processeurs
généralistes et graphiques
Caroline Collange

08
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Programmer ses structures de contrôle :
continuations et opérateurs de contrôle
Xavier Leroy

15
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Représentations intermédiaires pour la compilation :
s'affranchir du graphe de flot de contrôle
Delphine Demange

15
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Pratique des effets : des exceptions aux gestionnaires
d'effets
Xavier Leroy

22
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Compiling with Continuations
Andrew Kennedy 22

FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Théorie des effets : des monades aux effets
algébriques
Xavier Leroy

29
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Les continuations : cinq minutes pour les apprendre,
toute une vie pour les comprendre
Olivier Danvy

29
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Typage et analyse statique des effets
Xavier Leroy 07

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

How Mathematics Guides Effect Handlers
Matija Pretnar 07

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Logiques de programmes pour le contrôle et les effets
Xavier Leroy 14

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Design and Compilation of Efficient Effect Handlers in
the Koka Language
Daan Leijen

14
MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

Cours en relation avec le séminaire : Structures de contrôle : de « goto » aux
effets algébriques

Xavier Leroy, chaire Sciences du logiciel

Accès direct

Actualités

Presse et kit logo

Le Collège en 10 questions

Formation doctorale

Travailler au Collège de France

Marchés publics

La Lettre du Collège

Visiter le Collège de France

Nos autres sites S’inscrire à notre lettre d’information

Entrez votre adresse e-mail Envoyer

Nous suivre

Accès et contacts Mentions légales Crédits Accessibilité : non conforme

Intranet

Omnia

Salamandre

Fondation du Collège de
France

Programme PAUSE

Avenir Commun Durable

La Vie des idées

Campus de l’innovation pour
les lycées

Partager

How will the next seminar series in 75 years be titled?

D O C U M E N TS E T M É D I A S

Programme

Voir aussi

Accueil / Chaires actuelles / Xavier Leroy, chaire Sciences du logiciel / Enseignements / Structures de contrôle : de « goto » aux effets
algébriques

05
FÉV
2099

→
12
MAR
2099

SÉMINAIRE

Structures de contrôle : des effets algébriques au
« ??? »

Du jeudi 5 février au
jeudi 12 mars 2099

Voir aussi :
Cours associé•
Xavier Leroy•

Unité de contrôle Jacquard pour métiers à tisser. - © Heinz Nixdorf
MuseumsForum / Braun, Jan (CC BY-NC-SA)

Télécharger le programme pdf (628.92 Ko)

C O U R S 09:30 - 11:00

Naissance des structures de contrôle : du « goto » à la
programmation structurée
Xavier Leroy

25
JAN
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Structures de contrôle avancées : des subroutines
aux coroutines et au parallélisme
Xavier Leroy

01
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Chassez le contrôle... : la programmation déclarative
Xavier Leroy 08

FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Comment concilier parallélisme et contrôle ?
Approches des architectures de processeurs
généralistes et graphiques
Caroline Collange

08
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Programmer ses structures de contrôle :
continuations et opérateurs de contrôle
Xavier Leroy

15
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Représentations intermédiaires pour la compilation :
s'affranchir du graphe de flot de contrôle
Delphine Demange

15
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Pratique des effets : des exceptions aux gestionnaires
d'effets
Xavier Leroy

22
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Compiling with Continuations
Andrew Kennedy 22

FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Théorie des effets : des monades aux effets
algébriques
Xavier Leroy

29
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Les continuations : cinq minutes pour les apprendre,
toute une vie pour les comprendre
Olivier Danvy

29
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Typage et analyse statique des effets
Xavier Leroy 07

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

How Mathematics Guides Effect Handlers
Matija Pretnar 07

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Logiques de programmes pour le contrôle et les effets
Xavier Leroy 14

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Design and Compilation of Efficient Effect Handlers in
the Koka Language
Daan Leijen

14
MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

Cours en relation avec le séminaire : Structures de contrôle : de « goto » aux
effets algébriques

Xavier Leroy, chaire Sciences du logiciel

Accès direct

Actualités

Presse et kit logo

Le Collège en 10 questions

Formation doctorale

Travailler au Collège de France

Marchés publics

La Lettre du Collège

Visiter le Collège de France

Nos autres sites S’inscrire à notre lettre d’information

Entrez votre adresse e-mail Envoyer

Nous suivre

Accès et contacts Mentions légales Crédits Accessibilité : non conforme

Intranet

Omnia

Salamandre

Fondation du Collège de
France

Programme PAUSE

Avenir Commun Durable

La Vie des idées

Campus de l’innovation pour
les lycées

Partager

HANDLERSHANDLERS

HANDLERS

HANDLERS

HANDLERS

HANDLERS

HANDLERS

Moggi recognised monads in the semantics of effectful computations

Computational lambda-calculus and monads
Eugenio Moggi∗Lab. for Found. of Comp. Sci.University of EdinburghEH9 3JZ Edinburgh, UKOn leave from Univ. di Pisa

Abstract

The λ-calculus is considered an useful mathematical
tool in the study of programming languages. However,
if one uses βη-conversion to prove equivalence of pro-
grams, then a gross simplification1 is introduced. We
give a calculus based on a categorical semantics for
computations , which provides a correct basis for prov-
ing equivalence of programs, independent from any
specific computational model.

Introduction
This paper is about logics for reasoning about pro-
grams, in particular for proving equivalence of pro-
grams. Following a consolidated tradition in theoret-
ical computer science we identify programs with the
closed λ-terms, possibly containing extra constants,
corresponding to some features of the programming
language under consideration. There are three ap-
proaches to proving equivalence of programs:• The operational approach starts from an oper-

ational semantics, e.g. a partial function map-
ping every program (i.e. closed term) to its result-
ing value (if any), which induces a congruence re-
lation on open terms called operational equiva-
lence (see e.g. [10]). Then the problem is to prove
that two terms are operationally equivalent.• The denotational approach gives an interpreta-
tion of the (programming) language in a math-
ematical structure, the intended model. Thenthe problem is to prove that two terms denote the
same object in the intended model.

∗Research partially supported by EEC Joint Collaboration
Contract # ST2J-0374-C(EDB).1Programs are identified with total functions from values to
values.

• The logical approach gives a class of possiblemodels for the language. Then the problem is toprove that two terms denotes the same object inall possible models.
The operational and denotational approaches give only
a theory (the operational equivalence ≈ and the set Th
of formulas valid in the intended model respectively),
and they (especially the operational approach) deal
with programming languages on a rather case-by-case
basis. On the other hand, the logical approach gives
a consequence relation ⊢ (Ax ⊢ A iff the formula A is
true in all models of the set of formulas Ax), which
can deal with different programming languages (e.g.
functional, imperative, non-deterministic) in a rather
uniform way, by simply changing the set of axioms
Ax, and possibly extending the language with new
constants. Moreover, the relation ⊢ is often semide-
cidable, so it is possible to give a sound and complete
formal system for it, while Th and ≈ are semidecidable
only in oversimplified cases.We do not take as a starting point for proving equiv-
alence of programs the theory of βη-conversion, which
identifies the denotation of a program (procedure) of
type A → B with a total function from A to B, since
this identification wipes out completely behaviours like
non-termination, non-determinism or side-effects, that
can be exhibited by real programs. Instead, we pro-
ceed as follows:
1. We take category theory as a general theory of

functions and develop on top a categorical se-
mantics of computations based on monads.2. We consider how the categorical semantics shouldbe extended to interpret λ-calculus.At the end we get a formal system, the computational

lambda-calculus (λc-calculus for short), for proving
equivalence of programs, which is sound and com-
plete w.r.t. the categorical semantics of computations.

1

The initial specification was taken to be mathematically more natural

The methodology outlined above is inspired by [13]2,

and it is followed in [11, 8] to obtain the λp-calculus.

The view that “category theory comes, logically, be-

fore the λ-calculus” led us to consider a categorical

semantics of computations first, rather than to mod-

ify directly the rules of βη-conversion to get a correct

calculus.
A type theoretic approach to partial functions and

computations is attempted in [1] by introducing a type

constructor Ā, whose intuitive meaning is the set of

computations of type A. Our categorical semantics is

based on a similar idea. Constable and Smith, how-

ever, do not adequately capture the general axioms for

computations (as we do), since they lack a general no-

tion of model and rely instead on operational, domain-

and recursion-theoretic intuition.

1 A categorical semantics of

computations

The basic idea behind the semantics of programs de-

scribed below is that a program denotes a morphism

from A (the object of values of type A) to TB (the

object of computations of type B).

This view of programs corresponds to call-by-value

parameter passing, but there is an alternative view of

“programs as functions from computations to compu-

tations” corresponding to call-by-name (see [10]). In

any case, the real issue is that the notions of value and

computation should not be confused. By taking call-

by-value we can stress better the importance of values.

Moreover, call-by-name can be more easily represented

in call-by-value than the other way around.

There are many possible choices for TB correspond-

ing to different notions of computations, for instance

in the category of sets the set of partial computa-

tions (of type B) is the lifting B + {⊥} and the set of

non-deterministic computations is the powerset P(B).

Rather than focus on specific notions of computations,

we will identify the general properties that the object

TB of computations must have. The basic require-

ment is that programs should form a category, and

the obvious choice for it is the Kleisli category for a

monad.

Definition 1.1 A monad over a category C is a

triple (T, η, µ), where T : C → C is a functor, η: IdC
.→

2“I am trying to find out where λ-calculus should come from,

and the fact that the notion of a cartesian closed category is a

late developing one (Eilenberg & Kelly (1966)), is not relevant

to the argument: I shall try to explain in my own words in the

next section why we should look to it first”.

T and µ: T 2 .→ T are natural transformations and the

following equations hold:

• µTA; µA = T (µA); µA

• ηTA; µA = idTA = T (ηA); µA

A computational model is a monad (T, η, µ) satis-

fying the mono requirement: ηA is a mono for every

A ∈ C.

There is an alternative description of a monad (see

[7]), which is easier to justify computationally.

Definition 1.2 A Kleisli triple over C is a triple

(T, η, ∗), where T : Obj(C) → Obj(C), ηA: A → TA,

f∗: TA → TB for f : A → TB and the following equa-

tions hold:

• η∗A = idTA

• ηA; f∗ = f

• f∗; g∗ = (f ; g∗)∗

Every Kleisli triple (T, η, ∗) corresponds to a monad

(T, η, µ) where T (f : A → B) = (f ; ηB)∗ and µA =

id∗
TA.

Intuitively ηA is the inclusion of values into compu-

tations and f∗ is the extension of a function f from

values to computations to a function from computa-

tions to computations, which first evaluates a compu-

tation and then applies f to the resulting value. The

equations for Kleisli triples say that programs form

a category, the Kleisli category CT , where the set

CT (A, B) of morphisms from A to B is C(A, TB), the

identity over A is ηA and composition of f followed

by g is f ; g∗. Although the mono requirement is very

natural there are cases in which it seems appropriate

to drop it, for instance: it may not be satisfied by the

monad of continuations.

Before going into more details we consider some ex-

amples of monads over the category of sets.

Example 1.3 Non-deterministic computations:

• T () is the covariant powerset functor, i.e. T (A) =

P(A) and T (f)(X) is the image of X along f

• ηA(a) is the singleton {a}

• µA(X) is the big union ∪X

Computations with side-effects:

• T () is the functor (× S)S , where S is a

nonempty set of stores . Intuitively a computa-

tion takes a store and returns a value together

with the modified store.

The methodology outlined above is inspired by [13] 2,

and it is followed in [11, 8] to obtain the λp-calculus.

The view that “category theory comes, logically, be-

fore the λ-calculus” led us to consider a categorical

semantics of computations first, rather than to mod-

ify directly the rules of βη-conversion to get a correct

calculus.A type theoretic approach to partial functions and

computations is attempted in [1] by introducing a type

constructor Ā, whose intuitive meaning is the set of

computations of type A. Our categorical semantics is

based on a similar idea. Constable and Smith, how-

ever, do not adequately capture the general axioms for

computations (as we do), since they lack a general no-

tion of model and rely instead on operational, domain-

and recursion-theoretic intuition.
1 A categorical semantics of

computations
The basic idea behind the semantics of programs de-

scribed below is that a program denotes a morphism

from A (the object of values of type A) to TB (the

object of computations of type B).

This view of programs corresponds to call-by-value

parameter passing, but there is an alternative view of

“programs as functions from computations to compu-

tations” corresponding to call-by-name (see [10]). In

any case, the real issue is that the notions of value and

computation should not be confused. By taking call-

by-value we can stress better the importance of values.

Moreover, call-by-name can be more easily represented

in call-by-value than the other way around.

There are many possible choices for TB correspond-

ing to different notions of computations, for instance

in the category of sets the set of partial computa-

tions (of type B) is the lifting B + {⊥} and the set of

non-deterministic computations is the powerset P(B).

Rather than focus on specific notions of computations,

we will identify the general properties that the object

TB of computations must have. The basic require-

ment is that programs should form a category, and

the obvious choice for it is the Kleisli category for a

monad.
Definition 1.1 A monad over a category C is a

triple (T, η, µ), where T : C → C is a functor, η: IdC .→

2“I am trying to find out where λ-calculus should come from,

and the fact that the notion of a cartesian closed category is a

late developing one (Eilenberg & Kelly (1966)), is not relevant

to the argument: I shall try to explain in my own words in the

next section why we should look to it first”.

T and µ:T 2 .→ T are natural transformations and the

following equations hold:
• µTA ;µA = T (µA);µA

• ηTA ;µA = idTA = T (ηA);µA

A computational model is a monad (T, η, µ) satis-

fying the mono requirement: ηA is a mono for every

A ∈ C.
There is an alternative description of a monad (see

[7]), which is easier to justify computationally.

Definition 1.2 A Kleisli triple over C is a triple

(T, η, ∗), where T : Obj(C) → Obj(C), ηA :A → TA,

f ∗:TA → TB for f :A → TB and the following equa-

tions hold:
• η ∗

A = idTA• ηA ; f ∗ = f• f ∗; g ∗ = (f ; g ∗)∗
Every Kleisli triple (T, η, ∗) corresponds to a monad

(T, η, µ) where T (f :A → B) = (f ; ηB)∗ and µA =

id ∗
TA .

Intuitively ηA is the inclusion of values into compu-

tations and f ∗ is the extension of a function f from

values to computations to a function from computa-

tions to computations, which first evaluates a compu-

tation and then applies f to the resulting value. The

equations for Kleisli triples say that programs form

a category, the Kleisli category CT , where the set

CT (A,B) of morphisms from A to B is C(A, TB), the

identity over A is ηA and composition of f followed

by g is f ; g ∗. Although the mono requirement is very

natural there are cases in which it seems appropriate

to drop it, for instance: it may not be satisfied by the

monad of continuations.

Before going into more details we consider some ex-

amples of monads over the category of sets.

Example 1.3 Non-deterministic computations:

• T () is the covariant powerset functor, i.e. T (A) =

P(A) and T (f)(X) is the image of X along f

• ηA(a) is the singleton {a}
• µA(X) is the big union ∪X

Computations with side-effects:

• T () is the functor (× S) S
, where S is a

nonempty set of stores . Intuitively a computa-

tion takes a store and returns a value together

with the modified store.
• ηA(a) is (λs:S.⟨a, s⟩)

• µA(f) is (λs:S.eval(fs)), i.e. the computation

that given a store s, first computes the pair

computation-store ⟨f ′, s ′⟩ = fs and then returns

the pair value-store ⟨a, s ′′⟩ = f ′s ′.

Continuations:• T () is the functor RR ()
, where R is a nonempty

set of results . Intuitively a computation takes a

continuation and returns a result.

• ηA(a) is (λk:RA
.ka)

• µA(f) is (λk:RA
.f(λh:RRA

.hk))

One can verify for himself that other notions of compu-

tation (e.g. partial, probabilistic or non-deterministic

with side-effects) fit in the general definition of monad.

1.1 A simple language

We introduce a programming language (with existence

and equivalence assertions), where programs denote

morphisms in the Kleisli category CT corresponding

to a computational model (T, η, µ) over a category C.

The language is oversimplified (for instance terms have

exactly one free variable) in order to define its inter-

pretation in any computational model. The additional

structure required to interpret λ-terms will be intro-

duced incrementally (see Section 2), after computa-

tions have been understood and axiomatized in isola-

tion.
The programming language is parametric in a sig-

nature (i.e. a set of base types and unary command

symbols), therefore its interpretation in a computa-

tional model is parametric in an interpretation of the

symbols in the signature. To stress the fact that the

interpretation is in CT (rather than C), we use τ1 ⇀ τ2

(instead of τ1 → τ2) as arities and ≡ : τ (instead of

= :T τ) as equality of computations of type τ .

• Given an interpretation [[A]] for any base type A,

i.e. an object of CT , then the interpretation of a

type τ : : = A | T τ is an object [[τ]] of CT defined

in the obvious way, [[T τ]] = T [[τ]].

• Given an interpretation [[p]] for any unary com-

mand p of arity τ1 ⇀ τ2 , i.e. a morphism from

[[τ1]] to [[τ2]] in CT , then the interpretation of a

well-formed program x: τ ⊢ e: τ ′ is a morphism

[[x: τ ⊢ e: τ ′]] in CT from [[τ]] to [[τ ′]] defined by

induction on the derivation of x: τ ⊢ e: τ ′ (see Ta-

ble 1).

• On top of the programming language we consider

equivalence and existence assertions (see Table 2).

Remark 1.4 The let-constructor is very important se-

mantically, since it corresponds to composition in the

Kleisli category CT . While substitution corresponds

to composition in C. In the λ-calculus (let x=e in e ′) is

usually treated as syntactic sugar for (λx.e ′)e, and this

can be done also in the λc-calculus. However, we think

that this is not the right way to proceed, because it

amounts to understanding the let-constructor, which

makes sense in any computational model, in terms of

constructors that make sense only in λc-models . On

the other hand, (letx=e in e ′) cannot be reduced to

the more basic substitution (i.e. e ′[x: = e]) without

collapsing CT to C.
The existence assertion e ↓ means that e denotes a

value and it generalizes the existence predicate used in

the logic of partial terms/elements, for instance:

• a partial computation exists iff it terminates;

• a non-deterministic computation exists iff it gives

exactly one result;
• a computation with side-effects exists iff it does

not change the store.2 Extending the language

In this section we describe the additional structure re-

quired to interpret λ-terms in a computational model.

It is well-known that λ-terms can be interpreted in a

cartesian closed categories (ccc), so one expects that

a monad over a ccc would suffice, however, there are

two problems:• the interpretation of (letx=e in e ′), when e ′ has

other free variables beside x, and

• the interpretation of functional types.

Example 2.1 To show why the interpretation of the

let-constructor is problematic, we try to interpret

x1 : τ1 ⊢ (letx2=e2 in e): τ , when both x1 and x2 are

free in e. Suppose that g2 : τ1 → T τ2 and g: τ1 ×

τ2 → T τ are the interpretations of x1 : τ1 ⊢ e2: τ2

and x1 : τ1 , x2 : τ2 ⊢ e: τ respectively. If T were IdC ,

then [[x1 : τ1 ⊢ (letx2=e2 in e): τ]] would be ⟨idτ1 , g2⟩; g.

In the general case, Table 1 says that ; above is

indeed composition in the Kleisli category, therefore

⟨idτ1 , g2⟩; g becomes ⟨idτ1 , g2⟩; g ∗. But in ⟨idτ1 , g2⟩; g ∗

there is a type mismatch, since the codomain of

⟨idτ1 , g2⟩ is τ1 × T τ2, while the domain of Tg is

T (τ1 × τ2).

The initial specification was taken to be mathematically more natural

The methodology outlined above is inspired by [13]2,

and it is followed in [11, 8] to obtain the λp-calculus.

The view that “category theory comes, logically, be-

fore the λ-calculus” led us to consider a categorical

semantics of computations first, rather than to mod-

ify directly the rules of βη-conversion to get a correct

calculus.
A type theoretic approach to partial functions and

computations is attempted in [1] by introducing a type

constructor Ā, whose intuitive meaning is the set of

computations of type A. Our categorical semantics is

based on a similar idea. Constable and Smith, how-

ever, do not adequately capture the general axioms for

computations (as we do), since they lack a general no-

tion of model and rely instead on operational, domain-

and recursion-theoretic intuition.

1 A categorical semantics of

computations

The basic idea behind the semantics of programs de-

scribed below is that a program denotes a morphism

from A (the object of values of type A) to TB (the

object of computations of type B).

This view of programs corresponds to call-by-value

parameter passing, but there is an alternative view of

“programs as functions from computations to compu-

tations” corresponding to call-by-name (see [10]). In

any case, the real issue is that the notions of value and

computation should not be confused. By taking call-

by-value we can stress better the importance of values.

Moreover, call-by-name can be more easily represented

in call-by-value than the other way around.

There are many possible choices for TB correspond-

ing to different notions of computations, for instance

in the category of sets the set of partial computa-

tions (of type B) is the lifting B + {⊥} and the set of

non-deterministic computations is the powerset P(B).

Rather than focus on specific notions of computations,

we will identify the general properties that the object

TB of computations must have. The basic require-

ment is that programs should form a category, and

the obvious choice for it is the Kleisli category for a

monad.

Definition 1.1 A monad over a category C is a

triple (T, η, µ), where T : C → C is a functor, η: IdC
.→

2“I am trying to find out where λ-calculus should come from,

and the fact that the notion of a cartesian closed category is a

late developing one (Eilenberg & Kelly (1966)), is not relevant

to the argument: I shall try to explain in my own words in the

next section why we should look to it first”.

T and µ: T 2 .→ T are natural transformations and the

following equations hold:

• µTA; µA = T (µA); µA

• ηTA; µA = idTA = T (ηA); µA

A computational model is a monad (T, η, µ) satis-

fying the mono requirement: ηA is a mono for every

A ∈ C.

There is an alternative description of a monad (see

[7]), which is easier to justify computationally.

Definition 1.2 A Kleisli triple over C is a triple

(T, η, ∗), where T : Obj(C) → Obj(C), ηA: A → TA,

f∗: TA → TB for f : A → TB and the following equa-

tions hold:

• η∗A = idTA

• ηA; f∗ = f

• f∗; g∗ = (f ; g∗)∗

Every Kleisli triple (T, η, ∗) corresponds to a monad

(T, η, µ) where T (f : A → B) = (f ; ηB)∗ and µA =

id∗
TA.

Intuitively ηA is the inclusion of values into compu-

tations and f∗ is the extension of a function f from

values to computations to a function from computa-

tions to computations, which first evaluates a compu-

tation and then applies f to the resulting value. The

equations for Kleisli triples say that programs form

a category, the Kleisli category CT , where the set

CT (A, B) of morphisms from A to B is C(A, TB), the

identity over A is ηA and composition of f followed

by g is f ; g∗. Although the mono requirement is very

natural there are cases in which it seems appropriate

to drop it, for instance: it may not be satisfied by the

monad of continuations.

Before going into more details we consider some ex-

amples of monads over the category of sets.

Example 1.3 Non-deterministic computations:

• T () is the covariant powerset functor, i.e. T (A) =

P(A) and T (f)(X) is the image of X along f

• ηA(a) is the singleton {a}

• µA(X) is the big union ∪X

Computations with side-effects:

• T () is the functor (× S)S , where S is a

nonempty set of stores . Intuitively a computa-

tion takes a store and returns a value together

with the modified store.

The methodology outlined above is inspired by [13] 2,

and it is followed in [11, 8] to obtain the λp-calculus.

The view that “category theory comes, logically, be-

fore the λ-calculus” led us to consider a categorical

semantics of computations first, rather than to mod-

ify directly the rules of βη-conversion to get a correct

calculus.A type theoretic approach to partial functions and

computations is attempted in [1] by introducing a type

constructor Ā, whose intuitive meaning is the set of

computations of type A. Our categorical semantics is

based on a similar idea. Constable and Smith, how-

ever, do not adequately capture the general axioms for

computations (as we do), since they lack a general no-

tion of model and rely instead on operational, domain-

and recursion-theoretic intuition.
1 A categorical semantics of

computations
The basic idea behind the semantics of programs de-

scribed below is that a program denotes a morphism

from A (the object of values of type A) to TB (the

object of computations of type B).

This view of programs corresponds to call-by-value

parameter passing, but there is an alternative view of

“programs as functions from computations to compu-

tations” corresponding to call-by-name (see [10]). In

any case, the real issue is that the notions of value and

computation should not be confused. By taking call-

by-value we can stress better the importance of values.

Moreover, call-by-name can be more easily represented

in call-by-value than the other way around.

There are many possible choices for TB correspond-

ing to different notions of computations, for instance

in the category of sets the set of partial computa-

tions (of type B) is the lifting B + {⊥} and the set of

non-deterministic computations is the powerset P(B).

Rather than focus on specific notions of computations,

we will identify the general properties that the object

TB of computations must have. The basic require-

ment is that programs should form a category, and

the obvious choice for it is the Kleisli category for a

monad.
Definition 1.1 A monad over a category C is a

triple (T, η, µ), where T : C → C is a functor, η: IdC .→

2“I am trying to find out where λ-calculus should come from,

and the fact that the notion of a cartesian closed category is a

late developing one (Eilenberg & Kelly (1966)), is not relevant

to the argument: I shall try to explain in my own words in the

next section why we should look to it first”.

T and µ:T 2 .→ T are natural transformations and the

following equations hold:
• µTA ;µA = T (µA);µA

• ηTA ;µA = idTA = T (ηA);µA

A computational model is a monad (T, η, µ) satis-

fying the mono requirement: ηA is a mono for every

A ∈ C.
There is an alternative description of a monad (see

[7]), which is easier to justify computationally.

Definition 1.2 A Kleisli triple over C is a triple

(T, η, ∗), where T : Obj(C) → Obj(C), ηA :A → TA,

f ∗:TA → TB for f :A → TB and the following equa-

tions hold:
• η ∗

A = idTA• ηA ; f ∗ = f• f ∗; g ∗ = (f ; g ∗)∗
Every Kleisli triple (T, η, ∗) corresponds to a monad

(T, η, µ) where T (f :A → B) = (f ; ηB)∗ and µA =

id ∗
TA .

Intuitively ηA is the inclusion of values into compu-

tations and f ∗ is the extension of a function f from

values to computations to a function from computa-

tions to computations, which first evaluates a compu-

tation and then applies f to the resulting value. The

equations for Kleisli triples say that programs form

a category, the Kleisli category CT , where the set

CT (A,B) of morphisms from A to B is C(A, TB), the

identity over A is ηA and composition of f followed

by g is f ; g ∗. Although the mono requirement is very

natural there are cases in which it seems appropriate

to drop it, for instance: it may not be satisfied by the

monad of continuations.

Before going into more details we consider some ex-

amples of monads over the category of sets.

Example 1.3 Non-deterministic computations:

• T () is the covariant powerset functor, i.e. T (A) =

P(A) and T (f)(X) is the image of X along f

• ηA(a) is the singleton {a}
• µA(X) is the big union ∪X

Computations with side-effects:

• T () is the functor (× S) S
, where S is a

nonempty set of stores . Intuitively a computa-

tion takes a store and returns a value together

with the modified store.
• ηA(a) is (λs:S.⟨a, s⟩)

• µA(f) is (λs:S.eval(fs)), i.e. the computation

that given a store s, first computes the pair

computation-store ⟨f ′, s ′⟩ = fs and then returns

the pair value-store ⟨a, s ′′⟩ = f ′s ′.

Continuations:• T () is the functor RR ()
, where R is a nonempty

set of results . Intuitively a computation takes a

continuation and returns a result.

• ηA(a) is (λk:RA
.ka)

• µA(f) is (λk:RA
.f(λh:RRA

.hk))

One can verify for himself that other notions of compu-

tation (e.g. partial, probabilistic or non-deterministic

with side-effects) fit in the general definition of monad.

1.1 A simple language

We introduce a programming language (with existence

and equivalence assertions), where programs denote

morphisms in the Kleisli category CT corresponding

to a computational model (T, η, µ) over a category C.

The language is oversimplified (for instance terms have

exactly one free variable) in order to define its inter-

pretation in any computational model. The additional

structure required to interpret λ-terms will be intro-

duced incrementally (see Section 2), after computa-

tions have been understood and axiomatized in isola-

tion.
The programming language is parametric in a sig-

nature (i.e. a set of base types and unary command

symbols), therefore its interpretation in a computa-

tional model is parametric in an interpretation of the

symbols in the signature. To stress the fact that the

interpretation is in CT (rather than C), we use τ1 ⇀ τ2

(instead of τ1 → τ2) as arities and ≡ : τ (instead of

= :T τ) as equality of computations of type τ .

• Given an interpretation [[A]] for any base type A,

i.e. an object of CT , then the interpretation of a

type τ : : = A | T τ is an object [[τ]] of CT defined

in the obvious way, [[T τ]] = T [[τ]].

• Given an interpretation [[p]] for any unary com-

mand p of arity τ1 ⇀ τ2 , i.e. a morphism from

[[τ1]] to [[τ2]] in CT , then the interpretation of a

well-formed program x: τ ⊢ e: τ ′ is a morphism

[[x: τ ⊢ e: τ ′]] in CT from [[τ]] to [[τ ′]] defined by

induction on the derivation of x: τ ⊢ e: τ ′ (see Ta-

ble 1).

• On top of the programming language we consider

equivalence and existence assertions (see Table 2).

Remark 1.4 The let-constructor is very important se-

mantically, since it corresponds to composition in the

Kleisli category CT . While substitution corresponds

to composition in C. In the λ-calculus (let x=e in e ′) is

usually treated as syntactic sugar for (λx.e ′)e, and this

can be done also in the λc-calculus. However, we think

that this is not the right way to proceed, because it

amounts to understanding the let-constructor, which

makes sense in any computational model, in terms of

constructors that make sense only in λc-models . On

the other hand, (letx=e in e ′) cannot be reduced to

the more basic substitution (i.e. e ′[x: = e]) without

collapsing CT to C.
The existence assertion e ↓ means that e denotes a

value and it generalizes the existence predicate used in

the logic of partial terms/elements, for instance:

• a partial computation exists iff it terminates;

• a non-deterministic computation exists iff it gives

exactly one result;
• a computation with side-effects exists iff it does

not change the store.2 Extending the language

In this section we describe the additional structure re-

quired to interpret λ-terms in a computational model.

It is well-known that λ-terms can be interpreted in a

cartesian closed categories (ccc), so one expects that

a monad over a ccc would suffice, however, there are

two problems:• the interpretation of (letx=e in e ′), when e ′ has

other free variables beside x, and

• the interpretation of functional types.

Example 2.1 To show why the interpretation of the

let-constructor is problematic, we try to interpret

x1 : τ1 ⊢ (letx2=e2 in e): τ , when both x1 and x2 are

free in e. Suppose that g2 : τ1 → T τ2 and g: τ1 ×

τ2 → T τ are the interpretations of x1 : τ1 ⊢ e2: τ2

and x1 : τ1 , x2 : τ2 ⊢ e: τ respectively. If T were IdC ,

then [[x1 : τ1 ⊢ (letx2=e2 in e): τ]] would be ⟨idτ1 , g2⟩; g.

In the general case, Table 1 says that ; above is

indeed composition in the Kleisli category, therefore

⟨idτ1 , g2⟩; g becomes ⟨idτ1 , g2⟩; g ∗. But in ⟨idτ1 , g2⟩; g ∗

there is a type mismatch, since the codomain of

⟨idτ1 , g2⟩ is τ1 × T τ2, while the domain of Tg is

T (τ1 × τ2).

The initial specification was taken to be mathematically more natural

The methodology outlined above is inspired by [13]2,

and it is followed in [11, 8] to obtain the λp-calculus.

The view that “category theory comes, logically, be-

fore the λ-calculus” led us to consider a categorical

semantics of computations first, rather than to mod-

ify directly the rules of βη-conversion to get a correct

calculus.
A type theoretic approach to partial functions and

computations is attempted in [1] by introducing a type

constructor Ā, whose intuitive meaning is the set of

computations of type A. Our categorical semantics is

based on a similar idea. Constable and Smith, how-

ever, do not adequately capture the general axioms for

computations (as we do), since they lack a general no-

tion of model and rely instead on operational, domain-

and recursion-theoretic intuition.

1 A categorical semantics of

computations

The basic idea behind the semantics of programs de-

scribed below is that a program denotes a morphism

from A (the object of values of type A) to TB (the

object of computations of type B).

This view of programs corresponds to call-by-value

parameter passing, but there is an alternative view of

“programs as functions from computations to compu-

tations” corresponding to call-by-name (see [10]). In

any case, the real issue is that the notions of value and

computation should not be confused. By taking call-

by-value we can stress better the importance of values.

Moreover, call-by-name can be more easily represented

in call-by-value than the other way around.

There are many possible choices for TB correspond-

ing to different notions of computations, for instance

in the category of sets the set of partial computa-

tions (of type B) is the lifting B + {⊥} and the set of

non-deterministic computations is the powerset P(B).

Rather than focus on specific notions of computations,

we will identify the general properties that the object

TB of computations must have. The basic require-

ment is that programs should form a category, and

the obvious choice for it is the Kleisli category for a

monad.

Definition 1.1 A monad over a category C is a

triple (T, η, µ), where T : C → C is a functor, η: IdC
.→

2“I am trying to find out where λ-calculus should come from,

and the fact that the notion of a cartesian closed category is a

late developing one (Eilenberg & Kelly (1966)), is not relevant

to the argument: I shall try to explain in my own words in the

next section why we should look to it first”.

T and µ: T 2 .→ T are natural transformations and the

following equations hold:

• µTA; µA = T (µA); µA

• ηTA; µA = idTA = T (ηA); µA

A computational model is a monad (T, η, µ) satis-

fying the mono requirement: ηA is a mono for every

A ∈ C.

There is an alternative description of a monad (see

[7]), which is easier to justify computationally.

Definition 1.2 A Kleisli triple over C is a triple

(T, η, ∗), where T : Obj(C) → Obj(C), ηA: A → TA,

f∗: TA → TB for f : A → TB and the following equa-

tions hold:

• η∗A = idTA

• ηA; f∗ = f

• f∗; g∗ = (f ; g∗)∗

Every Kleisli triple (T, η, ∗) corresponds to a monad

(T, η, µ) where T (f : A → B) = (f ; ηB)∗ and µA =

id∗
TA.

Intuitively ηA is the inclusion of values into compu-

tations and f∗ is the extension of a function f from

values to computations to a function from computa-

tions to computations, which first evaluates a compu-

tation and then applies f to the resulting value. The

equations for Kleisli triples say that programs form

a category, the Kleisli category CT , where the set

CT (A, B) of morphisms from A to B is C(A, TB), the

identity over A is ηA and composition of f followed

by g is f ; g∗. Although the mono requirement is very

natural there are cases in which it seems appropriate

to drop it, for instance: it may not be satisfied by the

monad of continuations.

Before going into more details we consider some ex-

amples of monads over the category of sets.

Example 1.3 Non-deterministic computations:

• T () is the covariant powerset functor, i.e. T (A) =

P(A) and T (f)(X) is the image of X along f

• ηA(a) is the singleton {a}

• µA(X) is the big union ∪X

Computations with side-effects:

• T () is the functor (× S)S , where S is a

nonempty set of stores . Intuitively a computa-

tion takes a store and returns a value together

with the modified store.

The methodology outlined above is inspired by [13] 2,

and it is followed in [11, 8] to obtain the λp-calculus.

The view that “category theory comes, logically, be-

fore the λ-calculus” led us to consider a categorical

semantics of computations first, rather than to mod-

ify directly the rules of βη-conversion to get a correct

calculus.A type theoretic approach to partial functions and

computations is attempted in [1] by introducing a type

constructor Ā, whose intuitive meaning is the set of

computations of type A. Our categorical semantics is

based on a similar idea. Constable and Smith, how-

ever, do not adequately capture the general axioms for

computations (as we do), since they lack a general no-

tion of model and rely instead on operational, domain-

and recursion-theoretic intuition.
1 A categorical semantics of

computations
The basic idea behind the semantics of programs de-

scribed below is that a program denotes a morphism

from A (the object of values of type A) to TB (the

object of computations of type B).

This view of programs corresponds to call-by-value

parameter passing, but there is an alternative view of

“programs as functions from computations to compu-

tations” corresponding to call-by-name (see [10]). In

any case, the real issue is that the notions of value and

computation should not be confused. By taking call-

by-value we can stress better the importance of values.

Moreover, call-by-name can be more easily represented

in call-by-value than the other way around.

There are many possible choices for TB correspond-

ing to different notions of computations, for instance

in the category of sets the set of partial computa-

tions (of type B) is the lifting B + {⊥} and the set of

non-deterministic computations is the powerset P(B).

Rather than focus on specific notions of computations,

we will identify the general properties that the object

TB of computations must have. The basic require-

ment is that programs should form a category, and

the obvious choice for it is the Kleisli category for a

monad.
Definition 1.1 A monad over a category C is a

triple (T, η, µ), where T : C → C is a functor, η: IdC .→

2“I am trying to find out where λ-calculus should come from,

and the fact that the notion of a cartesian closed category is a

late developing one (Eilenberg & Kelly (1966)), is not relevant

to the argument: I shall try to explain in my own words in the

next section why we should look to it first”.

T and µ:T 2 .→ T are natural transformations and the

following equations hold:
• µTA ;µA = T (µA);µA

• ηTA ;µA = idTA = T (ηA);µA

A computational model is a monad (T, η, µ) satis-

fying the mono requirement: ηA is a mono for every

A ∈ C.
There is an alternative description of a monad (see

[7]), which is easier to justify computationally.

Definition 1.2 A Kleisli triple over C is a triple

(T, η, ∗), where T : Obj(C) → Obj(C), ηA :A → TA,

f ∗:TA → TB for f :A → TB and the following equa-

tions hold:
• η ∗

A = idTA• ηA ; f ∗ = f• f ∗; g ∗ = (f ; g ∗)∗
Every Kleisli triple (T, η, ∗) corresponds to a monad

(T, η, µ) where T (f :A → B) = (f ; ηB)∗ and µA =

id ∗
TA .

Intuitively ηA is the inclusion of values into compu-

tations and f ∗ is the extension of a function f from

values to computations to a function from computa-

tions to computations, which first evaluates a compu-

tation and then applies f to the resulting value. The

equations for Kleisli triples say that programs form

a category, the Kleisli category CT , where the set

CT (A,B) of morphisms from A to B is C(A, TB), the

identity over A is ηA and composition of f followed

by g is f ; g ∗. Although the mono requirement is very

natural there are cases in which it seems appropriate

to drop it, for instance: it may not be satisfied by the

monad of continuations.

Before going into more details we consider some ex-

amples of monads over the category of sets.

Example 1.3 Non-deterministic computations:

• T () is the covariant powerset functor, i.e. T (A) =

P(A) and T (f)(X) is the image of X along f

• ηA(a) is the singleton {a}
• µA(X) is the big union ∪X

Computations with side-effects:

• T () is the functor (× S) S
, where S is a

nonempty set of stores . Intuitively a computa-

tion takes a store and returns a value together

with the modified store.
• ηA(a) is (λs:S.⟨a, s⟩)

• µA(f) is (λs:S.eval(fs)), i.e. the computation

that given a store s, first computes the pair

computation-store ⟨f ′, s ′⟩ = fs and then returns

the pair value-store ⟨a, s ′′⟩ = f ′s ′.

Continuations:• T () is the functor RR ()
, where R is a nonempty

set of results . Intuitively a computation takes a

continuation and returns a result.

• ηA(a) is (λk:RA
.ka)

• µA(f) is (λk:RA
.f(λh:RRA

.hk))

One can verify for himself that other notions of compu-

tation (e.g. partial, probabilistic or non-deterministic

with side-effects) fit in the general definition of monad.

1.1 A simple language

We introduce a programming language (with existence

and equivalence assertions), where programs denote

morphisms in the Kleisli category CT corresponding

to a computational model (T, η, µ) over a category C.

The language is oversimplified (for instance terms have

exactly one free variable) in order to define its inter-

pretation in any computational model. The additional

structure required to interpret λ-terms will be intro-

duced incrementally (see Section 2), after computa-

tions have been understood and axiomatized in isola-

tion.
The programming language is parametric in a sig-

nature (i.e. a set of base types and unary command

symbols), therefore its interpretation in a computa-

tional model is parametric in an interpretation of the

symbols in the signature. To stress the fact that the

interpretation is in CT (rather than C), we use τ1 ⇀ τ2

(instead of τ1 → τ2) as arities and ≡ : τ (instead of

= :T τ) as equality of computations of type τ .

• Given an interpretation [[A]] for any base type A,

i.e. an object of CT , then the interpretation of a

type τ : : = A | T τ is an object [[τ]] of CT defined

in the obvious way, [[T τ]] = T [[τ]].

• Given an interpretation [[p]] for any unary com-

mand p of arity τ1 ⇀ τ2 , i.e. a morphism from

[[τ1]] to [[τ2]] in CT , then the interpretation of a

well-formed program x: τ ⊢ e: τ ′ is a morphism

[[x: τ ⊢ e: τ ′]] in CT from [[τ]] to [[τ ′]] defined by

induction on the derivation of x: τ ⊢ e: τ ′ (see Ta-

ble 1).

• On top of the programming language we consider

equivalence and existence assertions (see Table 2).

Remark 1.4 The let-constructor is very important se-

mantically, since it corresponds to composition in the

Kleisli category CT . While substitution corresponds

to composition in C. In the λ-calculus (let x=e in e ′) is

usually treated as syntactic sugar for (λx.e ′)e, and this

can be done also in the λc-calculus. However, we think

that this is not the right way to proceed, because it

amounts to understanding the let-constructor, which

makes sense in any computational model, in terms of

constructors that make sense only in λc-models . On

the other hand, (letx=e in e ′) cannot be reduced to

the more basic substitution (i.e. e ′[x: = e]) without

collapsing CT to C.
The existence assertion e ↓ means that e denotes a

value and it generalizes the existence predicate used in

the logic of partial terms/elements, for instance:

• a partial computation exists iff it terminates;

• a non-deterministic computation exists iff it gives

exactly one result;
• a computation with side-effects exists iff it does

not change the store.2 Extending the language

In this section we describe the additional structure re-

quired to interpret λ-terms in a computational model.

It is well-known that λ-terms can be interpreted in a

cartesian closed categories (ccc), so one expects that

a monad over a ccc would suffice, however, there are

two problems:• the interpretation of (letx=e in e ′), when e ′ has

other free variables beside x, and

• the interpretation of functional types.

Example 2.1 To show why the interpretation of the

let-constructor is problematic, we try to interpret

x1 : τ1 ⊢ (letx2=e2 in e): τ , when both x1 and x2 are

free in e. Suppose that g2 : τ1 → T τ2 and g: τ1 ×

τ2 → T τ are the interpretations of x1 : τ1 ⊢ e2: τ2

and x1 : τ1 , x2 : τ2 ⊢ e: τ respectively. If T were IdC ,

then [[x1 : τ1 ⊢ (letx2=e2 in e): τ]] would be ⟨idτ1 , g2⟩; g.

In the general case, Table 1 says that ; above is

indeed composition in the Kleisli category, therefore

⟨idτ1 , g2⟩; g becomes ⟨idτ1 , g2⟩; g ∗. But in ⟨idτ1 , g2⟩; g ∗

there is a type mismatch, since the codomain of

⟨idτ1 , g2⟩ is τ1 × T τ2, while the domain of Tg is

T (τ1 × τ2).

The methodology outlined above is inspired by [13]2,

and it is followed in [11, 8] to obtain the λp-calculus.

The view that “category theory comes, logically, be-

fore the λ-calculus” led us to consider a categorical

semantics of computations first, rather than to mod-

ify directly the rules of βη-conversion to get a correct

calculus.
A type theoretic approach to partial functions and

computations is attempted in [1] by introducing a type

constructor Ā, whose intuitive meaning is the set of

computations of type A. Our categorical semantics is

based on a similar idea. Constable and Smith, how-

ever, do not adequately capture the general axioms for

computations (as we do), since they lack a general no-

tion of model and rely instead on operational, domain-

and recursion-theoretic intuition.

1 A categorical semantics of

computations

The basic idea behind the semantics of programs de-

scribed below is that a program denotes a morphism

from A (the object of values of type A) to TB (the

object of computations of type B).

This view of programs corresponds to call-by-value

parameter passing, but there is an alternative view of

“programs as functions from computations to compu-

tations” corresponding to call-by-name (see [10]). In

any case, the real issue is that the notions of value and

computation should not be confused. By taking call-

by-value we can stress better the importance of values.

Moreover, call-by-name can be more easily represented

in call-by-value than the other way around.

There are many possible choices for TB correspond-

ing to different notions of computations, for instance

in the category of sets the set of partial computa-

tions (of type B) is the lifting B + {⊥} and the set of

non-deterministic computations is the powerset P(B).

Rather than focus on specific notions of computations,

we will identify the general properties that the object

TB of computations must have. The basic require-

ment is that programs should form a category, and

the obvious choice for it is the Kleisli category for a

monad.

Definition 1.1 A monad over a category C is a

triple (T, η, µ), where T : C → C is a functor, η: IdC
.→

2“I am trying to find out where λ-calculus should come from,

and the fact that the notion of a cartesian closed category is a

late developing one (Eilenberg & Kelly (1966)), is not relevant

to the argument: I shall try to explain in my own words in the

next section why we should look to it first”.

T and µ: T 2 .→ T are natural transformations and the

following equations hold:

• µTA; µA = T (µA); µA

• ηTA; µA = idTA = T (ηA); µA

A computational model is a monad (T, η, µ) satis-

fying the mono requirement: ηA is a mono for every

A ∈ C.

There is an alternative description of a monad (see

[7]), which is easier to justify computationally.

Definition 1.2 A Kleisli triple over C is a triple

(T, η, ∗), where T : Obj(C) → Obj(C), ηA: A → TA,

f∗: TA → TB for f : A → TB and the following equa-

tions hold:

• η∗A = idTA

• ηA; f∗ = f

• f∗; g∗ = (f ; g∗)∗

Every Kleisli triple (T, η, ∗) corresponds to a monad

(T, η, µ) where T (f : A → B) = (f ; ηB)∗ and µA =

id∗
TA.

Intuitively ηA is the inclusion of values into compu-

tations and f∗ is the extension of a function f from

values to computations to a function from computa-

tions to computations, which first evaluates a compu-

tation and then applies f to the resulting value. The

equations for Kleisli triples say that programs form

a category, the Kleisli category CT , where the set

CT (A, B) of morphisms from A to B is C(A, TB), the

identity over A is ηA and composition of f followed

by g is f ; g∗. Although the mono requirement is very

natural there are cases in which it seems appropriate

to drop it, for instance: it may not be satisfied by the

monad of continuations.
Before going into more details we consider some ex-

amples of monads over the category of sets.

Example 1.3 Non-deterministic computations:

• T () is the covariant powerset functor, i.e. T (A) =

P(A) and T (f)(X) is the image of X along f

• ηA(a) is the singleton {a}

• µA(X) is the big union ∪X

Computations with side-effects:

• T () is the functor (× S)S , where S is a

nonempty set of stores . Intuitively a computa-

tion takes a store and returns a value together

with the modified store.

In his subsequent work, a computationally natural approach was taken

INFORMATION AND COMPUTATION 93, 55-92 (199 1)

Notions of Computation and Monads
EUGENIO MOGGI*

Department of Computer Science, Unirersity of Edinburgh, Edinburgh EN9 352, UK The i.-calculus is considered a useful mathematical tool in the study of program-
ming languages, since programs can be identified with I-terms. However, if one goes
further and uses bn-conversion to prove equivalence of programs, then a gross

simplification is introduced (programs are identified with total functions from

calues to values) that may jeopardise the applicability of theoretical results, In this
paper we introduce calculi. based on a categorical semantics for computations, that
provide a correct basis for proving equivalence of programs for a wide range of

notions of computation. :i’: 199 I Academic Press. Inc.

INTRODUCTION
This paper is about logics for reasoning about programs, in particular

for proving equivalence of programs. Following a consolidated tradition in
theoretical computer science we identify programs with the closed A-terms,
possibly containing extra constants, corresponding to some features of the
programming language under consideration. There are three semantics-
based approaches to proving equivalence of programs: l The operational approach starts from an operational semantics,

e.g., a partial function mapping every program (i.e., closed term) to its
resulting value (if any), which induces a congruence relation on open terms
called operational equivalence (see e.g. Plotkin (1975)). Then the problem is
to prove that two terms are operationally equivalent. l The denotational approach gives an interpretation of the
(programming) language in a mathematical structure, the intended model.
Then the problem is to prove that two terms denote the same object in the
intended model.

l The logical approach gives a class of possible models for the
(programming) language. Then the problem is to prove that two terms
denote the same object in all possible models. The operational and denotational approaches give only a theory: the

operational equivalence z or the set Th of formulas valid in the intended
model, respectively. On the other hand, the logical approach gives a conse-

* Research partially supported by EEC Joint Collaboration Contract ST2J-0374C(EDB). 55

0890~5401/91 $3.00 CopyrIght !(? 1991 by Academic Press. Inc All rights of reproduction m any form reserved.

In his subsequent work, a computationally natural approach was taken

INFORMATION AND COMPUTATION 93, 55-92 (199 1)

Notions of Computation and Monads
EUGENIO MOGGI*

Department of Computer Science, Unirersity of Edinburgh, Edinburgh EN9 352, UK The i.-calculus is considered a useful mathematical tool in the study of program-
ming languages, since programs can be identified with I-terms. However, if one goes
further and uses bn-conversion to prove equivalence of programs, then a gross

simplification is introduced (programs are identified with total functions from

calues to values) that may jeopardise the applicability of theoretical results, In this
paper we introduce calculi. based on a categorical semantics for computations, that
provide a correct basis for proving equivalence of programs for a wide range of

notions of computation. :i’: 199 I Academic Press. Inc.

INTRODUCTION
This paper is about logics for reasoning about programs, in particular

for proving equivalence of programs. Following a consolidated tradition in
theoretical computer science we identify programs with the closed A-terms,
possibly containing extra constants, corresponding to some features of the
programming language under consideration. There are three semantics-
based approaches to proving equivalence of programs: l The operational approach starts from an operational semantics,

e.g., a partial function mapping every program (i.e., closed term) to its
resulting value (if any), which induces a congruence relation on open terms
called operational equivalence (see e.g. Plotkin (1975)). Then the problem is
to prove that two terms are operationally equivalent. l The denotational approach gives an interpretation of the
(programming) language in a mathematical structure, the intended model.
Then the problem is to prove that two terms denote the same object in the
intended model.

l The logical approach gives a class of possible models for the
(programming) language. Then the problem is to prove that two terms
denote the same object in all possible models. The operational and denotational approaches give only a theory: the

operational equivalence z or the set Th of formulas valid in the intended
model, respectively. On the other hand, the logical approach gives a conse-

* Research partially supported by EEC Joint Collaboration Contract ST2J-0374C(EDB). 55

0890~5401/91 $3.00 CopyrIght !(? 1991 by Academic Press. Inc All rights of reproduction m any form reserved.

60 EUGENIO MOCK31

i.e., f followed by g in VT with parameter x is the program which first

evaluates the programf(x) and then feeds the resulting value as parameter

to g. At this point we can give also a simple justification for the three

axioms of Kleisli triples, namely that they are equivalent to the unit and

associativity axioms for VT:,.:

l ,f; qt=fforf: A+ TB

l q,;f*=fforf: A -+ TB

l (f; g*); h* =f; (g; h*)* forf: A -+ TB, g: B-t TC and h: C-r TD.

EXAMPLE 1.4. We go through the notions of computation given in

Example 1.1 and show that they are indeed part of suitable Kleisli triples.

. partiality TA=A.(=A+ (I})

qA is the inclusion of A into A,

iff: A+ TB, thenf*(l)=I andf*(a)=f(a) (when UEA)

l nondeterminism TA = &,(A)

qA is the singleton map UH {u}

iff: A + TB and CE TA, thenf*(c) = UIE(.f(x)

l side-effects TA = (A x S)s

ylA is the map UH (As: S. (a, s))

iff: A+ TB and CE TA, thenf*(c)=Is: S.(let (a,.~‘) =c(s) inf(u)(s’))

exceptions TA = (A + E)
qA is the injection map a H inl(u)

if f: A + TB then ,f*(inr(e)) = e (when e E E) and f*(inl(u)) = f(u) (when

UEA)
l continuations TA = R(@’

‘la is the map UH (Lk): RA.k(a))

iff: A + TB and c E TA, then f*(c) = (ik: RB.c(h: A.f(a)(k)))

l interactive input TA = (py A + y “)

qa maps a to the tree consisting only of one leaf labelled with a

iff: A + TB and c E TA, then f*(c) is the tree obtained by replacing leaves

of c labelled by a with the treef(u)

l interactive output TA = (,uy . A + (U x y))

q.+, is the map UH (a, a)
iff: A + TB, then f*((s, a)) = (S * s’, b), where f(a) = (s’, b) and s * s’

is the concatenation of s followed by s’.

Kleisli triples are just an alternative description for monads. Although

the former are easy to justify from a computational perspective, the latter

are more widely used in the literature on category theory and have the

advantage of being defined only in terms of functors and natural trans-

formations, which make them more suitable for abstract manipulation.

58

EUGENIO MOGGI A), and take as denotations of programs (of type A) the elements of TA.

In particular, we identify the type A with the object of values (of type A)

and obtain the object of computations (of type A) by applying an unary

type-constructor T to A. We call T a notion of computation, since it

abstracts away from the type of values computations may produce. There

are many choices for TA corresponding to different notions of computa-

tions.

EXAMPLE 1.1. We give few notions of computation in the category of

sets:
l partiality TA = A, (i.e., A + {I)), where I is the &verging

computation
l nondeterminism TA = Pfifin(A) l side-effects TA = (A x S)‘, where S is a set of states, e.g. a set UL

of stores or a set of input/output sequences U*
. exceptions TA = (A + E), where E is the set of exceptions

l continuations TA = RcRA’, where R is the set of results

. interactive input TA = (py. A + rU), where U is the set of charac-

ters; more explicitly TA is the set of U-branching trees with finite branches

and A-labelled leaves . interactive output TA = (sly . A + (U x y)); more explicitly TA is

(isomorphic to) U* x A. Further examples (in a category of cpos) could be given based on the

denotational semantics for various programming languages (see Schmidt

(1986), Gunter and Scott (1989), and Mosses (1989)).

Rather than focusing on a specific T, we want to find the general proper-

ties common to all notions of computation; therefore we impose as the only

requirement that programs should form a category. The aim of this section

is to convince the reader, with a sequence of informal argumentations, that

such a requirement amounts to saying that T is part of a Kleisli triple

(T, q, - *) and that the category of programs is the Kleisli category for

such a triple.
DEFINITION 1.2 (Manes, 1976). A Kleisli triple over a category Q? is a

triple (T, q, - *), where T: Obj(‘%) + Obj(%‘), qA: A + TA for A E Obj(%),

f *: TA + TB for f: A -+ TB and the following equations hold:

l q:=id,,
l qA;f*=fforf: A+TB l f *; g* = (f; g*)* for f: A -+ TB and g: B + TC.

A Kleisli satisfies the mono requirement provided nA is mono for A E %‘.

Wadler transformed the semantic notion into a programming construct

Comprehending Monads
Philip Wadler

University of Glasgow

AbstractCategory theorists invented monads in the 1960’s to concisely express certain

aspects of universal algebra. Functional programmers invented list comprehensions

in the 1970’s to concisely express certain programs involving lists. This paper shows

how list comprehensions may be generalised to an arbitrary monad, and how the

resulting programming feature can concisely express in a pure functional language

some programs that manipulate state, handle exceptions, parse text, or invoke con-

tinuations. A new solution to the old problem of destructive array update is also

presented. No knowledge of category theory is assumed.
1 Introduction
Is there a way to combine the indulgences of impurity with the blessings of purity?

Impure, strict functional languages such as Standard ML [Mil84, HMT88] and Scheme

[RC86] support a wide variety of features, such as assigning to state, handling exceptions,

and invoking continuations. Pure, lazy functional languages such as Haskell [HPW91] or

Miranda1 [Tur85] eschew such features, because they are incompatible with the advan-

tages of lazy evaluation and equational reasoning, advantages that have been described

at length elsewhere [Hug89, BW88].Purity has its regrets, and all programmers in pure functional languages will recall

some moment when an impure feature has tempted them. For instance, if a counter is

required to generate unique names, then an assignable variable seems just the ticket. In

such cases it is always possible to mimic the required impure feature by straightforward

though tedious means. For instance, a counter can be simulated by modifying the relevant

functions to accept an additional parameter (the counter’s current value) and return an

additional result (the counter’s updated value).1Miranda is a trademark of Research Software Limited.Author’s address: Department of Computing Science, University of Glasgow, G12 8QQ, Scotland. Elec-

tronic mail: wadler@cs.glasgow.ac.uk.This paper appeared in Mathematical Structures in Computer Science volume 2, pp. 461–493, 1992; copy-

right Cambridge University Press. This version corrects a few small errors in the published version. An

earlier version appeared in ACM Conference on Lisp and Functional Programming, Nice, June 1990.
1

Wadler transformed the semantic notion into a programming construct

Comprehending Monads
Philip Wadler

University of Glasgow

AbstractCategory theorists invented monads in the 1960’s to concisely express certain

aspects of universal algebra. Functional programmers invented list comprehensions

in the 1970’s to concisely express certain programs involving lists. This paper shows

how list comprehensions may be generalised to an arbitrary monad, and how the

resulting programming feature can concisely express in a pure functional language

some programs that manipulate state, handle exceptions, parse text, or invoke con-

tinuations. A new solution to the old problem of destructive array update is also

presented. No knowledge of category theory is assumed.
1 Introduction
Is there a way to combine the indulgences of impurity with the blessings of purity?

Impure, strict functional languages such as Standard ML [Mil84, HMT88] and Scheme

[RC86] support a wide variety of features, such as assigning to state, handling exceptions,

and invoking continuations. Pure, lazy functional languages such as Haskell [HPW91] or

Miranda1 [Tur85] eschew such features, because they are incompatible with the advan-

tages of lazy evaluation and equational reasoning, advantages that have been described

at length elsewhere [Hug89, BW88].Purity has its regrets, and all programmers in pure functional languages will recall

some moment when an impure feature has tempted them. For instance, if a counter is

required to generate unique names, then an assignable variable seems just the ticket. In

such cases it is always possible to mimic the required impure feature by straightforward

though tedious means. For instance, a counter can be simulated by modifying the relevant

functions to accept an additional parameter (the counter’s current value) and return an

additional result (the counter’s updated value).1Miranda is a trademark of Research Software Limited.Author’s address: Department of Computing Science, University of Glasgow, G12 8QQ, Scotland. Elec-

tronic mail: wadler@cs.glasgow.ac.uk.This paper appeared in Mathematical Structures in Computer Science volume 2, pp. 461–493, 1992; copy-

right Cambridge University Press. This version corrects a few small errors in the published version. An

earlier version appeared in ACM Conference on Lisp and Functional Programming, Nice, June 1990.
1

4.1 State transformers

Fix a type S of states. The monad of state transformers ST is defined by

type ST x = S → (x , S)

mapST f x = λs → [(f x , s′) | (x , s′) ← x s]Id

unitST x = λs → (x , s)

join
ST x = λs → [(x , s′′) | (x , s′) ← x s , (x , s′′) ← x s′]Id .

(Recall the equivalence of Id -comprehensions and “let” terms as explained in Section 3.1.)

A state transformer of type x takes a state and returns a value of type x and a new state.

The unit takes the value x into the state transformer λs → (x , s) that returns x and

leaves the state unchanged. We have that

[(x , y) | x ← x , y ← y]ST = λs → [((x , y), s
′′) | (x , s′) ← x s , (y , s′′) ← y s′]I

d .

This applies the state transformer x to the state s , yielding the value x and the new state

s′; it then applies a second transformer y to the state s′ yielding the value y and the

newer state s′′; finally, it returns a value consisting of x paired with y and the final state

s′′.
Two useful operations in this monad are

fetch :: ST S

fetch = λs → (s , s)

assign :: S → ST ()

assign s′ = λs → ((), s
′).

The first of these fetches the current value of the state, leaving the state unchanged; the

second discards the old state, assigning the new state to be the given value. Here () is

the type that contains only the value ().

A third useful operation is

init :: S → ST x → x

init s x = [x | (x , s′) ← x s]Id .

This applies the state transformer x to a given initial state s ; it returns the value computed

by the state transformer while discarding the final state.

4.2 Example: Renaming

Say we wish to rename all bound variables in a lambda term. A suitable data type Term

for representing lambda terms is defined in Figure 1 (in Standard ML) and Figure 2 (in

Haskell). New names are to be generated by counting; we assume there is a function

mkname :: Int → Name

10

Wadler transformed the semantic notion into a programming construct

Comprehending Monads
Philip Wadler

University of Glasgow

AbstractCategory theorists invented monads in the 1960’s to concisely express certain

aspects of universal algebra. Functional programmers invented list comprehensions

in the 1970’s to concisely express certain programs involving lists. This paper shows

how list comprehensions may be generalised to an arbitrary monad, and how the

resulting programming feature can concisely express in a pure functional language

some programs that manipulate state, handle exceptions, parse text, or invoke con-

tinuations. A new solution to the old problem of destructive array update is also

presented. No knowledge of category theory is assumed.
1 Introduction
Is there a way to combine the indulgences of impurity with the blessings of purity?

Impure, strict functional languages such as Standard ML [Mil84, HMT88] and Scheme

[RC86] support a wide variety of features, such as assigning to state, handling exceptions,

and invoking continuations. Pure, lazy functional languages such as Haskell [HPW91] or

Miranda1 [Tur85] eschew such features, because they are incompatible with the advan-

tages of lazy evaluation and equational reasoning, advantages that have been described

at length elsewhere [Hug89, BW88].Purity has its regrets, and all programmers in pure functional languages will recall

some moment when an impure feature has tempted them. For instance, if a counter is

required to generate unique names, then an assignable variable seems just the ticket. In

such cases it is always possible to mimic the required impure feature by straightforward

though tedious means. For instance, a counter can be simulated by modifying the relevant

functions to accept an additional parameter (the counter’s current value) and return an

additional result (the counter’s updated value).1Miranda is a trademark of Research Software Limited.Author’s address: Department of Computing Science, University of Glasgow, G12 8QQ, Scotland. Elec-

tronic mail: wadler@cs.glasgow.ac.uk.This paper appeared in Mathematical Structures in Computer Science volume 2, pp. 461–493, 1992; copy-

right Cambridge University Press. This version corrects a few small errors in the published version. An

earlier version appeared in ACM Conference on Lisp and Functional Programming, Nice, June 1990.
1

4.1 State transformers

Fix a type S of states. The monad of state transformers ST is defined by

type ST x = S → (x , S)

mapST f x = λs → [(f x , s′) | (x , s′) ← x s]Id

unitST x = λs → (x , s)

join
ST x = λs → [(x , s′′) | (x , s′) ← x s , (x , s′′) ← x s′]Id .

(Recall the equivalence of Id -comprehensions and “let” terms as explained in Section 3.1.)

A state transformer of type x takes a state and returns a value of type x and a new state.

The unit takes the value x into the state transformer λs → (x , s) that returns x and

leaves the state unchanged. We have that

[(x , y) | x ← x , y ← y]ST = λs → [((x , y), s
′′) | (x , s′) ← x s , (y , s′′) ← y s′]I

d .

This applies the state transformer x to the state s , yielding the value x and the new state

s′; it then applies a second transformer y to the state s′ yielding the value y and the

newer state s′′; finally, it returns a value consisting of x paired with y and the final state

s′′.
Two useful operations in this monad are

fetch :: ST S

fetch = λs → (s , s)

assign :: S → ST ()

assign s′ = λs → ((), s
′).

The first of these fetches the current value of the state, leaving the state unchanged; the

second discards the old state, assigning the new state to be the given value. Here () is

the type that contains only the value ().

A third useful operation is

init :: S → ST x → x

init s x = [x | (x , s′) ← x s]Id .

This applies the state transformer x to a given initial state s ; it returns the value computed

by the state transformer while discarding the final state.

4.2 Example: Renaming

Say we wish to rename all bound variables in a lambda term. A suitable data type Term

for representing lambda terms is defined in Figure 1 (in Standard ML) and Figure 2 (in

Haskell). New names are to be generated by counting; we assume there is a function

mkname :: Int → Name

10

Wadler transformed the semantic notion into a programming construct

Comprehending Monads
Philip Wadler

University of Glasgow

AbstractCategory theorists invented monads in the 1960’s to concisely express certain

aspects of universal algebra. Functional programmers invented list comprehensions

in the 1970’s to concisely express certain programs involving lists. This paper shows

how list comprehensions may be generalised to an arbitrary monad, and how the

resulting programming feature can concisely express in a pure functional language

some programs that manipulate state, handle exceptions, parse text, or invoke con-

tinuations. A new solution to the old problem of destructive array update is also

presented. No knowledge of category theory is assumed.
1 Introduction
Is there a way to combine the indulgences of impurity with the blessings of purity?

Impure, strict functional languages such as Standard ML [Mil84, HMT88] and Scheme

[RC86] support a wide variety of features, such as assigning to state, handling exceptions,

and invoking continuations. Pure, lazy functional languages such as Haskell [HPW91] or

Miranda1 [Tur85] eschew such features, because they are incompatible with the advan-

tages of lazy evaluation and equational reasoning, advantages that have been described

at length elsewhere [Hug89, BW88].Purity has its regrets, and all programmers in pure functional languages will recall

some moment when an impure feature has tempted them. For instance, if a counter is

required to generate unique names, then an assignable variable seems just the ticket. In

such cases it is always possible to mimic the required impure feature by straightforward

though tedious means. For instance, a counter can be simulated by modifying the relevant

functions to accept an additional parameter (the counter’s current value) and return an

additional result (the counter’s updated value).1Miranda is a trademark of Research Software Limited.Author’s address: Department of Computing Science, University of Glasgow, G12 8QQ, Scotland. Elec-

tronic mail: wadler@cs.glasgow.ac.uk.This paper appeared in Mathematical Structures in Computer Science volume 2, pp. 461–493, 1992; copy-

right Cambridge University Press. This version corrects a few small errors in the published version. An

earlier version appeared in ACM Conference on Lisp and Functional Programming, Nice, June 1990.
1

4.1 State transformers

Fix a type S of states. The monad of state transformers ST is defined by

type ST x = S → (x , S)

mapST f x = λs → [(f x , s′) | (x , s′) ← x s]Id

unitST x = λs → (x , s)

join
ST x = λs → [(x , s′′) | (x , s′) ← x s , (x , s′′) ← x s′]Id .

(Recall the equivalence of Id -comprehensions and “let” terms as explained in Section 3.1.)

A state transformer of type x takes a state and returns a value of type x and a new state.

The unit takes the value x into the state transformer λs → (x , s) that returns x and

leaves the state unchanged. We have that

[(x , y) | x ← x , y ← y]ST = λs → [((x , y), s
′′) | (x , s′) ← x s , (y , s′′) ← y s′]I

d .

This applies the state transformer x to the state s , yielding the value x and the new state

s′; it then applies a second transformer y to the state s′ yielding the value y and the

newer state s′′; finally, it returns a value consisting of x paired with y and the final state

s′′.
Two useful operations in this monad are

fetch :: ST S

fetch = λs → (s , s)

assign :: S → ST ()

assign s′ = λs → ((), s
′).

The first of these fetches the current value of the state, leaving the state unchanged; the

second discards the old state, assigning the new state to be the given value. Here () is

the type that contains only the value ().

A third useful operation is

init :: S → ST x → x

init s x = [x | (x , s′) ← x s]Id .

This applies the state transformer x to a given initial state s ; it returns the value computed

by the state transformer while discarding the final state.

4.2 Example: Renaming

Say we wish to rename all bound variables in a lambda term. A suitable data type Term

for representing lambda terms is defined in Figure 1 (in Standard ML) and Figure 2 (in

Haskell). New names are to be generated by counting; we assume there is a function

mkname :: Int → Name

10

The proof is a simple induction on the structure of expressions. If the expression has the

form (Plus e1 e2), we have that
ro (exp SR

(Plus e1 e2))

= {unfolding exp SR}
ro [v1 + v2 | v1 ← exp SR

e1 , v2 ← exp SR
e2]SR

= {by (11)}[v1 + v2 | v1 ← ro (exp SR
e1), v2 ← ro (exp SR

e2)]ST

= {hypothesis}[v1 + v2 | v1 ← exp ST
e1 , v2 ← exp ST

e2]ST

= {folding exp ST}exp ST
(Plus e1 e2).

The other two cases are equally simple.

All of this extends straightforwardly to monads with zero. In this case we also require

that h ·zero M
= zero N, define the action of a morphism on a filter by h b = b, and observe

that (11) holds even when q contains filters.

7 More monads
This section describes four more monads: parsers, expressions, input-output, and contin-

uations. The basic techniques are not new (parsers are discussed in [Wad85, Fai87, FL89],

and exceptions are discussed in [Wad85, Spi90]), but monads and monad comprehensions

provide a convenient framework for their expression.

7.1 ParsersThe monad of parsers is given bytype Parse x = String → List (x , String)

map Parse f x = λi → [(f x , i ′) | (x , i ′) ← x i]List

unit Parse x
= λi → [(x , i)]List

join Parse x
= λi → [(x , i ′′) | (x , i ′) ← x i , (x , i ′′) ← x i ′]List.

Here String is the type of lists of Char . Thus, a parser accepts an input string and returns

a list of pairs. The list contains one pair for each successful parse, consisting of the value

parsed and the remaining unparsed input. An empty list denotes a failure to parse the

input. We have that[(x , y) | x ← x , y ← y]Parse
= λi → [((x , y), i ′′) | (x , i ′) ← x i , (y , i ′′) ← y i ′]List.

This applies the first parser to the input, binds x to the value parsed, then applies the

second parser to the remaining input, binds y to the value parsed, then returns the pair

(x , y) as the value together with input yet to be parsed. If either x or y fails to parse its

input (returning an empty list) then the combined parser will fail as well.
20

An effect is specified with a monad and additional operations

An effect is specified with a monad and additional operations

TX = 𝒫X
η(x) = {x}

c ≫= k = ⋃
x∈c

k(c)

monad

An effect is specified with a monad and additional operations

TX = 𝒫X
η(x) = {x}

c ≫= k = ⋃
x∈c

k(c)

monad

𝚏𝚊𝚒𝚕 : TX
𝚏𝚊𝚒𝚕 = {}

𝚌𝚑𝚘𝚘𝚜𝚎 : TX × TX → TX
𝚌𝚑𝚘𝚘𝚜𝚎(c1, c2) = c1 ∪ c2

effect-specific operations

Plotkin & Power recognised algebraic theories as sources of effects

Adequacy for Algebraic Eãects

Gordon Plotkin and John Power ?
Division of Informatics, University of Edinburgh, King’s Buildings,

Edinburgh EH9 3JZ, Scotland

Abstract. Moggi proposed a monadic account of computational eãects.

He also presented the computational ï-calculus, ïc, a core call-by-value

functional programming language for eãects; the eãects are obtained by

adding appropriate operations. The question arises as to whether one

can give a corresponding treatment of operational semantics. We do

this in the case of algebraic eãects where the operations are given by

a single-sorted algebraic signature, and their semantics is supported by

the monad, in a certain sense. We consider call-by-value PCF with—

and without—recursion, an extension of ïc with arithmetic. We prove

general adequacy theorems, and illustrate these with two examples: non-

determinism and probabilistic nondeterminism.

1 Introduction

Moggi introduced the idea of a general account of computational eãects, propos-

ing encapsulating them via monads T : C ! C; the main idea is that T (x) is

the type of computations of elements of x. He also presented the computational

ï-calculus ïc as a core call-by-value functional programming language for ef-

fects [21]. The eãects themselves are obtained by adding appropriate operations,

specified by a signature Ü. Moggi introduced the consideration of these opera-

tions in the context of his metalanguage ML(Ü) whose purpose is to give the

semantics of programming languages [22, 23], but which is not itself thought of

as a programming language.In our view any complete account of computation should incorporate a treat-

ment of operational semantics; this has been lacking for the monadic view. To

progress, one has to deal with the operations as they are the source of the eãects.

In this paper we give such a treatment in the case of algebraic eãects where the

operations are given by a single-sorted algebraic signature Ü; semantically such

an n-ary operation f is taken to denote a family of morphisms
fx : T (x)n Ä! T (x)parametrically natural with respect to morphisms in the Kleisli category CT ;

T is then said to support the family fx. (In [22] only naturality with respect

to morphisms in C is considered; we use the stronger assumption.) Note that

? This work has been done with the support of EPSRC grant GR/M56333: The Struc-

ture of Programming Languages: Syntax and Semantics.

An effect is specified with operations and equations

An effect is specified with operations and equations

𝚏𝚊𝚒𝚕 : 0
𝚌𝚑𝚘𝚘𝚜𝚎 : 2

operations

An effect is specified with operations and equations

𝚏𝚊𝚒𝚕 : 0
𝚌𝚑𝚘𝚘𝚜𝚎 : 2

operations

𝚌𝚑𝚘𝚘𝚜𝚎 (𝚌𝚑𝚘𝚘𝚜𝚎 M N) P = 𝚌𝚑𝚘𝚘𝚜𝚎 M (𝚌𝚑𝚘𝚘𝚜𝚎 N P)
𝚌𝚑𝚘𝚘𝚜𝚎 M N = 𝚌𝚑𝚘𝚘𝚜𝚎 N M
𝚌𝚑𝚘𝚘𝚜𝚎 M M = M

𝚌𝚑𝚘𝚘𝚜𝚎 𝚏𝚊𝚒𝚕 M = M = 𝚌𝚑𝚘𝚘𝚜𝚎 M 𝚏𝚊𝚒𝚕

equations

An effect is specified with operations and equations

𝚏𝚊𝚒𝚕 : 0
𝚌𝚑𝚘𝚘𝚜𝚎 : 2

operations

𝚌𝚑𝚘𝚘𝚜𝚎 (𝚌𝚑𝚘𝚘𝚜𝚎 M N) P = 𝚌𝚑𝚘𝚘𝚜𝚎 M (𝚌𝚑𝚘𝚘𝚜𝚎 N P)
𝚌𝚑𝚘𝚘𝚜𝚎 M N = 𝚌𝚑𝚘𝚘𝚜𝚎 N M
𝚌𝚑𝚘𝚘𝚜𝚎 M M = M

𝚌𝚑𝚘𝚘𝚜𝚎 𝚏𝚊𝚒𝚕 M = M = 𝚌𝚑𝚘𝚘𝚜𝚎 M 𝚏𝚊𝚒𝚕

equations

𝚌𝚑𝚜 B (𝚌𝚑𝚜 (𝚌𝚑𝚜 A C) (𝚌𝚑𝚜 B 𝚏𝚊𝚒𝚕))

An effect is specified with operations and equations

𝚏𝚊𝚒𝚕 : 0
𝚌𝚑𝚘𝚘𝚜𝚎 : 2

operations

𝚌𝚑𝚘𝚘𝚜𝚎 (𝚌𝚑𝚘𝚘𝚜𝚎 M N) P = 𝚌𝚑𝚘𝚘𝚜𝚎 M (𝚌𝚑𝚘𝚘𝚜𝚎 N P)
𝚌𝚑𝚘𝚘𝚜𝚎 M N = 𝚌𝚑𝚘𝚘𝚜𝚎 N M
𝚌𝚑𝚘𝚘𝚜𝚎 M M = M

𝚌𝚑𝚘𝚘𝚜𝚎 𝚏𝚊𝚒𝚕 M = M = 𝚌𝚑𝚘𝚘𝚜𝚎 M 𝚏𝚊𝚒𝚕

equations

𝚌𝚑𝚜 B (𝚌𝚑𝚜 (𝚌𝚑𝚜 A C) (𝚌𝚑𝚜 B 𝚏𝚊𝚒𝚕))
= 𝚌𝚑𝚜 B (𝚌𝚑𝚜 A (𝚌𝚑𝚜 C (𝚌𝚑𝚜 B 𝚏𝚊𝚒𝚕)))

An effect is specified with operations and equations

𝚏𝚊𝚒𝚕 : 0
𝚌𝚑𝚘𝚘𝚜𝚎 : 2

operations

𝚌𝚑𝚘𝚘𝚜𝚎 (𝚌𝚑𝚘𝚘𝚜𝚎 M N) P = 𝚌𝚑𝚘𝚘𝚜𝚎 M (𝚌𝚑𝚘𝚘𝚜𝚎 N P)
𝚌𝚑𝚘𝚘𝚜𝚎 M N = 𝚌𝚑𝚘𝚘𝚜𝚎 N M
𝚌𝚑𝚘𝚘𝚜𝚎 M M = M

𝚌𝚑𝚘𝚘𝚜𝚎 𝚏𝚊𝚒𝚕 M = M = 𝚌𝚑𝚘𝚘𝚜𝚎 M 𝚏𝚊𝚒𝚕

equations

𝚌𝚑𝚜 B (𝚌𝚑𝚜 (𝚌𝚑𝚜 A C) (𝚌𝚑𝚜 B 𝚏𝚊𝚒𝚕))
= 𝚌𝚑𝚜 B (𝚌𝚑𝚜 A (𝚌𝚑𝚜 C (𝚌𝚑𝚜 B 𝚏𝚊𝚒𝚕)))
= 𝚌𝚑𝚜 𝚏𝚊𝚒𝚕 (𝚌𝚑𝚜 A (𝚌𝚑𝚜 B (𝚌𝚑𝚜 B C)))

An effect is specified with operations and equations

𝚏𝚊𝚒𝚕 : 0
𝚌𝚑𝚘𝚘𝚜𝚎 : 2

operations

𝚌𝚑𝚘𝚘𝚜𝚎 (𝚌𝚑𝚘𝚘𝚜𝚎 M N) P = 𝚌𝚑𝚘𝚘𝚜𝚎 M (𝚌𝚑𝚘𝚘𝚜𝚎 N P)
𝚌𝚑𝚘𝚘𝚜𝚎 M N = 𝚌𝚑𝚘𝚘𝚜𝚎 N M
𝚌𝚑𝚘𝚘𝚜𝚎 M M = M

𝚌𝚑𝚘𝚘𝚜𝚎 𝚏𝚊𝚒𝚕 M = M = 𝚌𝚑𝚘𝚘𝚜𝚎 M 𝚏𝚊𝚒𝚕

equations

𝚌𝚑𝚜 B (𝚌𝚑𝚜 (𝚌𝚑𝚜 A C) (𝚌𝚑𝚜 B 𝚏𝚊𝚒𝚕))
= 𝚌𝚑𝚜 B (𝚌𝚑𝚜 A (𝚌𝚑𝚜 C (𝚌𝚑𝚜 B 𝚏𝚊𝚒𝚕)))
= 𝚌𝚑𝚜 𝚏𝚊𝚒𝚕 (𝚌𝚑𝚜 A (𝚌𝚑𝚜 B (𝚌𝚑𝚜 B C)))
= 𝚌𝚑𝚜 A (𝚌𝚑𝚜 B C) ≈ {A, B, C}

Exception handling failed to be algebraic

operations
exceptions fail try

state get set

choice choose

I/O read write

probability flip

not
algebraic

Why handling is not an algebraic operation?

Why handling is not an algebraic operation?

𝚝𝚛𝚢(𝚏𝚊𝚒𝚕, M) = M

𝚝𝚛𝚢(𝚟𝚊𝚕 V, M) = 𝚟𝚊𝚕 V
handling

Why handling is not an algebraic operation?

𝚍𝚘 x ⇐ 𝚝𝚛𝚢(M1, M2) 𝚒𝚗 N

= 𝚝𝚛𝚢(𝚍𝚘 x ⇐ M1 𝚒𝚗 N, 𝚍𝚘 x ⇐ M2 𝚒𝚗 N)

algebraicity
𝚝𝚛𝚢(𝚏𝚊𝚒𝚕, M) = M

𝚝𝚛𝚢(𝚟𝚊𝚕 V, M) = 𝚟𝚊𝚕 V
handling

Why handling is not an algebraic operation?

𝚍𝚘 x ⇐ 𝚝𝚛𝚢(M1, M2) 𝚒𝚗 N

= 𝚝𝚛𝚢(𝚍𝚘 x ⇐ M1 𝚒𝚗 N, 𝚍𝚘 x ⇐ M2 𝚒𝚗 N)

algebraicity

𝚍𝚘 x ⇐ 𝚟𝚊𝚕 0 𝚒𝚗 N

𝚝𝚛𝚢(𝚏𝚊𝚒𝚕, M) = M

𝚝𝚛𝚢(𝚟𝚊𝚕 V, M) = 𝚟𝚊𝚕 V
handling

Why handling is not an algebraic operation?

𝚍𝚘 x ⇐ 𝚝𝚛𝚢(M1, M2) 𝚒𝚗 N

= 𝚝𝚛𝚢(𝚍𝚘 x ⇐ M1 𝚒𝚗 N, 𝚍𝚘 x ⇐ M2 𝚒𝚗 N)

algebraicity

𝚍𝚘 x ⇐ 𝚟𝚊𝚕 0 𝚒𝚗 N
= 𝚍𝚘 x ⇐ 𝚝𝚛𝚢(𝚟𝚊𝚕 0,𝚟𝚊𝚕 1) 𝚒𝚗 N

𝚝𝚛𝚢(𝚏𝚊𝚒𝚕, M) = M

𝚝𝚛𝚢(𝚟𝚊𝚕 V, M) = 𝚟𝚊𝚕 V
handling

Why handling is not an algebraic operation?

𝚍𝚘 x ⇐ 𝚝𝚛𝚢(M1, M2) 𝚒𝚗 N

= 𝚝𝚛𝚢(𝚍𝚘 x ⇐ M1 𝚒𝚗 N, 𝚍𝚘 x ⇐ M2 𝚒𝚗 N)

algebraicity

𝚍𝚘 x ⇐ 𝚟𝚊𝚕 0 𝚒𝚗 N
= 𝚍𝚘 x ⇐ 𝚝𝚛𝚢(𝚟𝚊𝚕 0,𝚟𝚊𝚕 1) 𝚒𝚗 N
= 𝚝𝚛𝚢(𝚍𝚘 x ⇐ 𝚟𝚊𝚕 0 𝚒𝚗 N, 𝚍𝚘 x ⇐ 𝚟𝚊𝚕 1 𝚒𝚗 N)

𝚝𝚛𝚢(𝚏𝚊𝚒𝚕, M) = M

𝚝𝚛𝚢(𝚟𝚊𝚕 V, M) = 𝚟𝚊𝚕 V
handling

Why handling is not an algebraic operation?

𝚍𝚘 x ⇐ 𝚝𝚛𝚢(M1, M2) 𝚒𝚗 N

= 𝚝𝚛𝚢(𝚍𝚘 x ⇐ M1 𝚒𝚗 N, 𝚍𝚘 x ⇐ M2 𝚒𝚗 N)

algebraicity

𝚍𝚘 x ⇐ 𝚟𝚊𝚕 0 𝚒𝚗 N
= 𝚍𝚘 x ⇐ 𝚝𝚛𝚢(𝚟𝚊𝚕 0,𝚟𝚊𝚕 1) 𝚒𝚗 N
= 𝚝𝚛𝚢(𝚍𝚘 x ⇐ 𝚟𝚊𝚕 0 𝚒𝚗 N, 𝚍𝚘 x ⇐ 𝚟𝚊𝚕 1 𝚒𝚗 N)

failing

𝚝𝚛𝚢(𝚏𝚊𝚒𝚕, M) = M

𝚝𝚛𝚢(𝚟𝚊𝚕 V, M) = 𝚟𝚊𝚕 V
handling

Why handling is not an algebraic operation?

𝚍𝚘 x ⇐ 𝚝𝚛𝚢(M1, M2) 𝚒𝚗 N

= 𝚝𝚛𝚢(𝚍𝚘 x ⇐ M1 𝚒𝚗 N, 𝚍𝚘 x ⇐ M2 𝚒𝚗 N)

algebraicity

𝚍𝚘 x ⇐ 𝚟𝚊𝚕 0 𝚒𝚗 N
= 𝚍𝚘 x ⇐ 𝚝𝚛𝚢(𝚟𝚊𝚕 0,𝚟𝚊𝚕 1) 𝚒𝚗 N
= 𝚝𝚛𝚢(𝚍𝚘 x ⇐ 𝚟𝚊𝚕 0 𝚒𝚗 N, 𝚍𝚘 x ⇐ 𝚟𝚊𝚕 1 𝚒𝚗 N)
= 𝚍𝚘 x ⇐ 𝚟𝚊𝚕 1 𝚒𝚗 N

failing

𝚝𝚛𝚢(𝚏𝚊𝚒𝚕, M) = M

𝚝𝚛𝚢(𝚟𝚊𝚕 V, M) = 𝚟𝚊𝚕 V
handling

Exception handling indicated a different nature

Exception handling indicated a different nature

there is no assumption that the monads at hand are commutative. For C = Set,

examples are the finite powerset monad and binary choice operations; the monad

for probabilistic nondeterminism and probabilistic choice operations; and the

monad for printing and the printing operations (these are noncommutative).

As will be discussed below, there are natural analogues of these examples in

the domain-theoretic context where C = Dcppo, the category of dcppos and

continuous functions. Generally, suppose we are given a category C with finite

products and a finitary equational theory over a signature Ü. Assuming free

Ü-algebras exist, let T be the associated monad. Then every operation symbol

yields such a family, in an evident way. In the case C = Set a converse holds,

that every parametrically natural family arises as a composition of such families,

as follows, e.g., from a remark in Section 3 below.

On the other hand, for example, the exceptions monad does not support

its exception handling operation: only the weaker naturality holds there. This

monad is a free algebra functor for an equational theory, viz the one that has a

constant for each exception and no equations; however the exception handling

operation is not definable: only the exception raising operations are. Other stan-

dard monads present further diéculties. So while our account of operational

semantics is quite general, it certainly does not cover all cases; it remains to be

seen if it can be further extended.

To give an account of operational semantics we need a programming language

based on the computational ï-calculus with some basic datatypes and functions

in order to permit computation. We take as the test of our account whether a

useful general adequacy theorem can be proved. So we consider a call-by-value

PCF with algebraic eãects, an extension of the computational ï-calculus with

operations, arithmetic and recursion (see, e.g., [34, 32] for versions of call-by-

value PCF). We begin by treating the sublanguage without recursion. Section 2

presents both a small step and a (collecting) big step operational semantics;

there is also an associated evaluation function. Section 3 considers denotational

semantics and gives an adequacy theorem. The semantics is given axiomatically

in terms of a suitable class of categorical structures appropriately extending the

usual monadic view of the computational ï-calculus. This could as well have

been based on closed Freyd categories [30], and [2] is a treatment of nondeter-

minism along such lines. Section 4 considers two examples: nondeterminism and

probabilistic nondeterminism.

We consider the full language with recursion in Section 5. Small step se-

mantics is straightforward, but big step semantics presents some diéculties as

evaluation naturally yields infinite values since programs may not terminate.

We also consider an intermediate medium step semantics which is big step as re-

gards eãect-free computation and small step as regards eãects. For the semantics

we assume a suitable order-enrichment [16] in order to give a least fixed-point

treatment of recursion. This then yields an adequacy theorem, which is the main

result of the paper. One wonders if a more general treatment of recursion is pos-

sible within synthetic or axiomatic domain theory, cf. [32]. In Section 6 we revisit

the examples, but with recursion now present. Finally, in Section 7 we present

Exception handling indicated a different nature

there is no assumption that the monads at hand are commutative. For C = Set,

examples are the finite powerset monad and binary choice operations; the monad

for probabilistic nondeterminism and probabilistic choice operations; and the

monad for printing and the printing operations (these are noncommutative).

As will be discussed below, there are natural analogues of these examples in

the domain-theoretic context where C = Dcppo, the category of dcppos and

continuous functions. Generally, suppose we are given a category C with finite

products and a finitary equational theory over a signature Ü. Assuming free

Ü-algebras exist, let T be the associated monad. Then every operation symbol

yields such a family, in an evident way. In the case C = Set a converse holds,

that every parametrically natural family arises as a composition of such families,

as follows, e.g., from a remark in Section 3 below.

On the other hand, for example, the exceptions monad does not support

its exception handling operation: only the weaker naturality holds there. This

monad is a free algebra functor for an equational theory, viz the one that has a

constant for each exception and no equations; however the exception handling

operation is not definable: only the exception raising operations are. Other stan-

dard monads present further diéculties. So while our account of operational

semantics is quite general, it certainly does not cover all cases; it remains to be

seen if it can be further extended.

To give an account of operational semantics we need a programming language

based on the computational ï-calculus with some basic datatypes and functions

in order to permit computation. We take as the test of our account whether a

useful general adequacy theorem can be proved. So we consider a call-by-value

PCF with algebraic eãects, an extension of the computational ï-calculus with

operations, arithmetic and recursion (see, e.g., [34, 32] for versions of call-by-

value PCF). We begin by treating the sublanguage without recursion. Section 2

presents both a small step and a (collecting) big step operational semantics;

there is also an associated evaluation function. Section 3 considers denotational

semantics and gives an adequacy theorem. The semantics is given axiomatically

in terms of a suitable class of categorical structures appropriately extending the

usual monadic view of the computational ï-calculus. This could as well have

been based on closed Freyd categories [30], and [2] is a treatment of nondeter-

minism along such lines. Section 4 considers two examples: nondeterminism and

probabilistic nondeterminism.

We consider the full language with recursion in Section 5. Small step se-

mantics is straightforward, but big step semantics presents some diéculties as

evaluation naturally yields infinite values since programs may not terminate.

We also consider an intermediate medium step semantics which is big step as re-

gards eãect-free computation and small step as regards eãects. For the semantics

we assume a suitable order-enrichment [16] in order to give a least fixed-point

treatment of recursion. This then yields an adequacy theorem, which is the main

result of the paper. One wonders if a more general treatment of recursion is pos-

sible within synthetic or axiomatic domain theory, cf. [32]. In Section 6 we revisit

the examples, but with recursion now present. Finally, in Section 7 we present

Exception handling indicated a different nature

there is no assumption that the monads at hand are commutative. For C = Set,

examples are the finite powerset monad and binary choice operations; the monad

for probabilistic nondeterminism and probabilistic choice operations; and the

monad for printing and the printing operations (these are noncommutative).

As will be discussed below, there are natural analogues of these examples in

the domain-theoretic context where C = Dcppo, the category of dcppos and

continuous functions. Generally, suppose we are given a category C with finite

products and a finitary equational theory over a signature Ü. Assuming free

Ü-algebras exist, let T be the associated monad. Then every operation symbol

yields such a family, in an evident way. In the case C = Set a converse holds,

that every parametrically natural family arises as a composition of such families,

as follows, e.g., from a remark in Section 3 below.

On the other hand, for example, the exceptions monad does not support

its exception handling operation: only the weaker naturality holds there. This

monad is a free algebra functor for an equational theory, viz the one that has a

constant for each exception and no equations; however the exception handling

operation is not definable: only the exception raising operations are. Other stan-

dard monads present further diéculties. So while our account of operational

semantics is quite general, it certainly does not cover all cases; it remains to be

seen if it can be further extended.

To give an account of operational semantics we need a programming language

based on the computational ï-calculus with some basic datatypes and functions

in order to permit computation. We take as the test of our account whether a

useful general adequacy theorem can be proved. So we consider a call-by-value

PCF with algebraic eãects, an extension of the computational ï-calculus with

operations, arithmetic and recursion (see, e.g., [34, 32] for versions of call-by-

value PCF). We begin by treating the sublanguage without recursion. Section 2

presents both a small step and a (collecting) big step operational semantics;

there is also an associated evaluation function. Section 3 considers denotational

semantics and gives an adequacy theorem. The semantics is given axiomatically

in terms of a suitable class of categorical structures appropriately extending the

usual monadic view of the computational ï-calculus. This could as well have

been based on closed Freyd categories [30], and [2] is a treatment of nondeter-

minism along such lines. Section 4 considers two examples: nondeterminism and

probabilistic nondeterminism.

We consider the full language with recursion in Section 5. Small step se-

mantics is straightforward, but big step semantics presents some diéculties as

evaluation naturally yields infinite values since programs may not terminate.

We also consider an intermediate medium step semantics which is big step as re-

gards eãect-free computation and small step as regards eãects. For the semantics

we assume a suitable order-enrichment [16] in order to give a least fixed-point

treatment of recursion. This then yields an adequacy theorem, which is the main

result of the paper. One wonders if a more general treatment of recursion is pos-

sible within synthetic or axiomatic domain theory, cf. [32]. In Section 6 we revisit

the examples, but with recursion now present. Finally, in Section 7 we present

nondeterministic choice operation symbol or. Operation symbols are polymor-

phic. For instance, in modelling nondeterminism, one has the rule (suppressing

contexts):
M,N : õ

M or N : õ

for all types õ. So, in order to give a semantics for or, a minimal demand is to

model it by a natural transformation:

_x : (Tx)2 Ä! Tx

Again, for exceptions, for each exception e, one has a nullary operation sym-

bol raisee for raising the exception e and a binary one handlee for handling

e. Similar computationally natural operations exist for all the other examples

except, it seems, for continuations, which are accordingly beyond the scope of

this paper. One should note that in such cases as interactive input/output and

state, these operations may be infinitary (see below).

Moggi’s computational metalanguage does contain operations, and his pa-

per [14] includes semantics for them, but he only demanded naturality of the

operations in C, and he did not develop a body of theory in support of that se-

mantics. Here, by demanding the stronger coherence condition of parametrised

naturality in CT , we provide a notion of algebraic operations, which we support

by equivalence theorems to indicate definitiveness of the axioms, and which are

further supported by our development of a unified operational semantics in [20].

In all cases we can go further, taking the monad T to be generated by the

operations subject to accompanying equations; this idea is explored in [22, 7].

Of the various operations, handle is of a diãerent computational character

and, although natural, it is not algebraic. Andrzej Filinski (personal communi-

cation) describes handle as a deconstructor, whereas the other operations are

constructors (of eãects). In this paper, we make the notion of constructor precise

by identifying it with the notion of algebraic operation.

Algebraic operations are, in the sense we shall make precise, a natural gen-

eralisation, from Set to an arbitrary symmetric monoidal V-category C with

cotensors, of the usual operations of universal algebra, taking T to be a strong

V-monad on C. The key point is that the operations:

ãx : (Tx)v Ä! (Tx)w

(where (Ä)v denotes cotensor with an object v of V) are parametrically natural

in the Kleisli V-category CT . Enrichment allows us to employ complex arities,

i.e., objects of V , as in the case of local state—see below. (Enrichment by, e.g.,

V = !Cpo allows us to handle recursion, cf [1], but that is a rather diãerent

matter, not involving complex arities; here !Cpo is the category of small

!-cpos, i.e, the category of posets with sups of !-chains.) Parametrisation allows

us to model open terms. And naturality in the Kleisli category means that the

operations commute with evaluation contexts. In this paper, we do not make use

of the possibility of V , C, and Set all being diãerent, but it does seem to us to

be the mathematically natural general level at which to formulate our results.

Mathematics was already suggesting unrevealed constructs

constructors deconstructors
exceptions fail try

state get set

choice choose

I/O read write

probability flip

Mathematics was already suggesting unrevealed constructs

?
constructors deconstructors

exceptions fail try

state get set

choice choose

I/O read write

probability flip

Exception handlers are homomorphisms and they generalise to other effects

Handlers of Algebraic E↵ects

Gordon Plotkin ? and Matija Pretnar ??
Laboratory for Foundations of Computer Science,

School of Informatics, University of Edinburgh, Scotland

Abstract. We present an algebraic treatment of exception handlers and,

more generally, introduce handlers for other computational e↵ects repre-

sentable by an algebraic theory. These include nondeterminism, interac-

tive input/output, concurrency, state, time, and their combinations; in

all cases the computation monad is the free-model monad of the theory.

Each such handler corresponds to a model of the theory for the e↵ects

at hand. The handling construct, which applies a handler to a compu-

tation, is based on the one introduced by Benton and Kennedy, and is

interpreted using the homomorphism induced by the universal property

of the free model. This general construct can be used to describe previ-

ously unrelated concepts from both theory and practice.

1 Introduction

In seminal work, Moggi proposed a uniform representation of computational ef-

fects by monads [1–3]. The computations that return values from a set X are

represented by elements of TX, for a suitable monad T . Examples include excep-

tions, nondeterminism, interactive input/output, concurrency, state, time, con-

tinuations, and combinations thereof. Plotkin and Power later proposed to focus

on algebraic e↵ects, that is e↵ects that allow a representation by operations and

equations [4–6]; the operations give rise to the e↵ects at hand. All of the e↵ects

mentioned above are algebraic, with the notable exception of continuations [7],

which have to be treated di↵erently (see [8] for initial ideas).
In the algebraic approach the arguments of an operation represent possible

computations after an occurrence of an e↵ect. For example, using a binary choice

operation or :2, a nondeterministically chosen boolean is represented by the term

or(return true, return false) :Fbool, where F� stands for the type of computations

that return values of type �. The equations of the theory, for example the ones

stating that or is a semi-lattice operation, generate the free-model functor, which

is exactly the monad proposed by Moggi to model the corresponding e↵ect [9]

(modulo the forgetful functor) and which is used to interpret the type F�. The

operations are then interpreted by the model structure. When viewed as a fam-

ily of functions parametric in X, e.g., orX : TX2! TX, one obtains a so-called
? Supported by EPSRC grant GR/586371/01 and a Royal Society-Wolfson Award

Fellowship.?? Supported by EPSRC grant GR/586371/01.

The next step was implementing handlers in practice

The Programming Languages ZooThe Programming Languages Zoo
A potpourri of programming languages

> home

About the zoo

The Programming Languages Zoo is a collection of miniature programming languages
which demonstrates various concepts and techniques used in programming language
design and implementation. It is a good starting point for those who would like to
implement their own programming language, or just learn how it is done.

The following features are demonstrated:

>> functional, declarative, object-oriented, and procedural languages
>> source code parsing with a parser generator
>> keep track of source code positions
>> pretty-printing of values
>> interactive shell (REPL) and non-interactive file processing
>> untyped, statically and dynamically typed languages
>> type checking and type inference
>> subtyping, parametric polymorphism, and other kinds of type systems
>> eager and lazy evaluation strategies
>> recursive definitions
>> exceptions
>> interpreters and compilers
>> abstract machine

Installation

See the installation & compilation instructions.

The languages

The following languages are on display:

miniml_errorminiml_error
like miniml that can also abort execution

minihaskellminihaskell
lazy, functional, integers, booleans, lists, recursion, statically typed

miniprologminiprolog
logic programming, Horn clauses, unification

levylevy
call-by-push value, statically typed

commcomm
A procedural language with integer arithmetic, local variables, conditional
statements, while loops and print , compiled to simple machine code.

calccalc
integer arithmetic + , - , * , /

subsub
eager, mutable records, statically typed, subtyping

boaboa
object-oriented, eager, first-class functions, dynamic types, extensible
objects

lambdalambda
untyped λ-calculus, several evaluation strategies

calc_varcalc_var
integer arithmetic + , - , * , / , variables

minimlminiml
eager, functional, recursive functions, statically typed, compiler, abstract
machine

polypoly
lazy, functional, statically typed, parametric polymorphism, type inference

Usage

The languages are not really meant to be used. Rather, you should read and study
the source code, which is decorated with ample comments. Also, each language lang
has its own README.md and example.lang in the subdirectory src/lang .

Nevertheless, all the language are fully functioning miniature versions of real
languages and can be executed. For each language lang you can:

1. see what command-line options are available with

 ./lang.native --help

2. run the toplevel with

 ./lang.native

3. run files non-interactively with

 ./lang.native <file> <file> ...`

4. load files and enter the toplevel

 ./lang.native -l <file> -l <file> ...`

Authors

>> Andrej Bauer
>> Matija Pretnar

License

The project is open source and released under the permissive MIT license.

Contributing

New contributions are welcome. If you would like to contribute to the project,
please contact us through the GitHub project page:

>> If you discover a problem, open an issue.
>> Even better, fix the problem and submit a pull request!
>> If you would like to help but do not know how, have a look at open issues and

volunteer to resolve one.
>> If you have an idea for a new language, we will be happy to take it in. Please

note that all the languages are purposely kept simple for educational purposes.

Before you contibute a new langauge, please read these guidelines for contributing.

We wanted to do the same for handlers as Wadler did for monads

Wadler

Comprehending
monads

1991

Moggi

Computational lambda-calculus
and monads

1989

Plotkin & P.

Handlers of
algebraic effects

2009

We wanted to do the same for handlers as Wadler did for monads

Wadler

Comprehending
monads

1991 ?

Moggi

Computational lambda-calculus
and monads

1989

Plotkin & P.

Handlers of
algebraic effects

2009

Initial version of Eff had a Python-like syntax and was untyped

Posts Talks Publications Software About

← How eff handles built-in effects Programming with effects I: Theory →

Mathematics and Computation
A blog about mathemat ics for computers

Programming with effects II: Introducing eff
27 September 2010 Matija Pretnar Computation, Eff, Guest post, Programming, Software, Tutorial

[UPDATE 2012-03-08: since this post was written eff has changed considerably. For updated information, please visit the eff page.]

**This is a second post about the programming language eff. We covered the theory behind it in a previous post. Now we turn to the
programming language itself.

Please bear in mind that eff is an academic experiment. It is not meant to take over the world. Yet. We just wanted to show that the theoretical
ideas about the algebraic nature of computational effects can be put into practice. Eff has many superficial similarities with Haskell. This is no
surprise because there is a precise connection between algebras and monads. The main advantage of eff over Haskell is supposed to be the
ease with which computational effects can be combined.

Installation

If you have Mercurial installed (type hg at command prompt to find out) you can get eff like this:

$ hg clone http://hg.andrej.com/eff/ eff

Otherwise, you may also download the latest source as a .zip or .tar.gz, or visit the repository with your browser for other versions. Eff is
released under the simplified BSD License.

To compile eff you need Ocaml 3.11 or newer (there is an incompatibility with 3.10 in the Lexer module), ocamlbuild, and Menhir (which are
both likely to be bundled with Ocaml). Put the source in a suitable directory and compile it with make to create the Ocaml bytecode executable
eff.byte. When you run it you get an interactive shell without line editing capabilities. If you never make any typos that should be fine,
otherwise use one of the line editing wrappers, such as rlwrap or ledit. A handy shortcut eff runs eff.byte wrapped in rlwrap.

Syntax

Eff has Python-like syntax, with mandatory indentation. Tabs are not allowed in indentation, only spaces. The syntax is likely to change in the
future.

The basics

Before digging into the effects, let us look at some examples of purely functional code. Throughout the post, we present the examples as if they
were written in the interactive toplevel. For example:

>>> 1 + 2
3

You can also write code in a file and run it with eff, but in this case you should use the check command described below to see some output.

First, we have basic integer arithmetic with integers of unbounded size, booleans, strings, together with the basic operations:

>>> (1379610 + 9) * 80618151420468743021
111222333444555666777888999
>>> 1 == 2
False
>>> if 1 < 2:
... "one is less" ^ " than two"
... else:
... "you must be kidding"
"one is less than two"

We have tuples, lists, variants and records, all of which can be decomposed with pattern matching:

>>> (_, a, b) = (3, 4, 5)
>>> (a, b, a + b)
(4, 5, 9)
>>> 1 :: [2, 3, 4, 5] @ [6, 7, 8]
[1, 2, 3, 4, 5, 6, 7, 8]
>>> Tree l r = Tree (Leaf 4) (Tree (Leaf 5) (Leaf 6))
>>> r
Tree (Leaf 5) (Leaf 6)
>>> z = (re = 1, im = 5)
>>> (re = x, im = _) = z
>>> x
1
>>> (a, Foo (re = x), _) = ("banana", Foo (re=4, im=10), ["some", "stuff"])
>>> (a, x)
("banana", 4)

-abstraction is written like in Python, except you can start a block after the colon:

>>> (lambda x: (x, x + 1)) 5
(5, 6)
>>> f = lambda x (y, z):
... a = x + y
... b = z + a
... a * b
>>> f 1

>>> f 1 (2, 3)
18
</pre>

You can use patterns in λ-abstractions and write `lambda p q r: e` instead of `lambda p: lambda q: lambda r: e`. Note that eff is an expression-based language. There is no `return` command to return the result, even though for clarity we wrote explicit \mathtt{return}'s the previous post.

Recursive definitions are formed with `def`. Mutually recursive definitions are formed with `def`...`and`...`and`... In the following example we also see how to write match statements:

>>> def is_odd n:
... match n:
... case 0: False
... case n: is_even (n - 1)
... and is_even n:
... if n == 0: True
... else: is_odd (n - 1)
>>> is_odd 1234
False

Recursive definitions need not define functions:

>>> def one_two_three : [1, 2, 3] @ one_two_three
>>> one_two_three
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, ...]

For more examples, look at the file `prelude.eff`, which is loaded into eff before anything else happens.

How to use effects

One of eff's built-in effects are references (mutable store). To create a new reference instance `x` with initial value 5 we use the `with` statement:

>>> with ref 5 as x:
... a = x.lookup ()
... x.update (a + 3)
... x.update (x.lookup() + x.lookup())
... x.lookup()
Warning: Implicit sequencing between L4, 15-27 and L4, 28-37
16

In the above code `ref` is a function which accepts a value and returns an effect. The `with` creates a new instance of an effect and calls it `x`. The scope of the effect is the body of the `with` statement, i.e., `x` is a _local_ effect.

You will notice that eff prints a warning when it detects an ambiguous order of execution of operations. Sometimes it thinks that a piece of code contains effects when it actually does not and prints spurious warnings. You can use `pure e` to indicate that `e` does not contain any effects. We hope to get rid of `pure` once we have a type system for eff. Yes, eff currently does not check types. It does not seem easy to come up with a good type system for eff. We have found that the lack of types invites one to try all sorts of crazy things.

From now on, we are not going to show these warnings. If you do not like them, you can turn them off by passing the option `--careless` when starting eff.

We can create and mix several instances of `ref` (can you tell how many sequencing warnings would we get?):

>>> with ref 5 as x:
... with ref 10 as y:
... a = x.lookup () + y.lookup ()
... x.update (a + y.lookup ())
... x.lookup ()
25

If only one instance of an effect is needed, we need not give it a name. So we can have one nameless global `ref` instance:

>>> with ref 5:
... update (lookup () + 7)
... lookup ()
12

How to define effects

In eff we can define our own effects with the `effect` statement:

effect e:
 operation op_1 x: h_1(x)
 operation op_2 x: h_2(x)
 ...
 return x: r(x)
 finally x: f(x)

The above code defines an effect `e` with operations $\mathtt{op}_1, \mathtt{op}_2, \ldots$ which are handled by the code h_1, h_2, \ldots, respectively. The `return` clause tells us how to handle (pure) values. The `finally` clause tells us what should be done with the value, returned from the `with` statement that uses the effect `e`. In other words, it defines a wrapper which tells us how to “run” the effect as well as how to “get out” of it (compare to Haskell's [runState](http://www.haskell.org/haskellwiki/State_Monad) for the state monad).

If you leave out the `return` or `finally` clauses it is assumed that they are identity functions.

User-defined references

Let us convert the reference example from the [first post](http://math.andrej.com/2010/09/27/programming-with-effects-i-theory/) to eff code. Since eff already has a builtin effect called `ref` we call our references `myref`:

>>> effect myref s_initial:
... operation lookup (): (lambda s: yield s s)
... operation update s_new: (lambda s: yield () s_new)
... return x: (lambda s: x)
... finally f: f s_initial

or, more concisely but equivalently:

>>> effect myref s_initial:
... operation lookup () s: yield s s
... operation update s_new s: yield () s_new
... return x s: x
... finally f: f s_initial

This is the definition of a function `myref` which maps `s_initial` to an effect. The effect has two operations, `lookup` and `update`, which are handled just like the algebraic operations \mathtt{lookup} and \mathtt{update} from the previous post. Because we use the generic effect notation we cannot refer to the continuation directly, but rather indirectly with the keyword `yield`.

Recall that a program which uses a reference of type S and returns a value of type T is in fact a map $S \to T$. The `finally` clause tells us what should be done with such a function, namely it should be applied to the initial state. In other words, `finally` is just syntactic sugar for a wrapper around the `with` statement, so

>>> with myref 5:
... some code

is equivalent to

>>> (with myref_without_finally:
... some code) 5

Let us check how our references mix with the builtin ones:

>>> with myref 100 as u:
... with ref 10 as z:
... u.update (u.lookup () + z.lookup ())
... z.update (u.lookup () + z.lookup ())
... (u.lookup (), z.lookup ())
(110, 120)

Exactly as we would have expected. We can create any number of local references. We can even store them in a list, and they will work correctly as long as they do not escape the scope of their declaration.

Choice

As the next example we define a choice operation. In general such an operation is given some values (in our case two, but it could be a list) and it is supposed to choose one of them. There are many different criteria according to which we might make a choice: randomly, non-deterministically, so that the end result is minimized, etc.

Let us first define a boring choice, which always chooses the first value:

>>> effect left_choice:
... operation choose (a, _): yield a
>>> with left_choice:
... x = choose (3, 2)
... y = choose (5, 10)
... x + y
8

Observe how we used `yield` to pass the result of the operation back to the continuation. It may take a bit of getting used to `yield` if you are not familiar with continuations.

A more interesting kind of choice is “magical” choice with always selects that value which leads to the least possible end result:

>>> effect min_choice:
... operation choose (a, b):
... l = yield a
... r = yield b
... min l r
>>> with min_choice:
... x = choose (3, 2)
... y = choose (5, 10)
... x + y
7

Notice how we used `yield` twice in order to test both possibilities: what happens if we choose `a` and what happens if we choose `b`. The end result is a kind of depth-first search. Another test case:

>>> with min_choice:
... x = choose (3, 4)
... y = choose (5, 6)
... z = choose (10, 1)
... x * x - y * z * x + z * z * z - y * y * x
-151

It should be possible to write all sorts of “choose” and “search” operators in eff that allow the programmer to write backtracking code with seemingly magical choice operators.

What if we wanted to collect _all_ possible results rather than just a particular one? No problem:

>>> effect all_choices:
... operation choose (a, b):
... l = yield a
... r = yield b
... l @ r
... return v: [v]
>>> with all_choices:
... x = choose (3, 2)
... y = choose (5, 10)
... x + y
[8, 13, 7, 12]

In this case, the operation first yields its left argument to the continuation and gets back a list `l` of possible results. It repeats the same with its right argument to get back a list `r`, and returns the concatenated list `l @ r`. The `return` clause tells us that a pure value gives just one choice.

Handlers

When we define an effect we tell how its operations are handled by default. We may also wrap a piece of code in a handler that temporarily redefines the behavior of operations. Here is a handler which intercepts lookups to reference `z` and always adds `1` to the actual value:

>>> with ref 10 as z:
... y = z.lookup ()
... handle:
... z.update 100
... x = z.lookup ()
... (x, y)
... with:
... operation z.lookup ():
... a = z.lookup () # this calls the outer lookup
... yield (a + 1)
(101, 10)

Exceptions

Eff does not have builtin exceptions. The \mathtt{fail} exception could be defined like this:

>>> effect maybe:
... operation fail(): Nothing
... return x: Just x
...
>>> with maybe:
... a = 5
... b = 6
... fail ()
... a + b
...
Nothing
>>> with maybe:
... a = 5
... b = 6
... a + b
...
Just 11

We are reminded of Haskell's Maybe monad, and not without reason. The cool thing is that exceptions act like exceptions within their scope and like optional values outside the scope. Thus we can handle exceptions inside their scope just as expected:

>>> with maybe:
... a = 5
... handle:
... b = 6
... fail ()
... a + b
... with:
... operation fail(): 42
...
Just 42

We can also have a version of `maybe` with default values:

>>> effect default x:
... operation fail(): x
...
>>> with default 42:
... a = 5
... b = 6
... fail ()
... a + b
...
42
>>> with default 42:
... a = 5
... b = 6
... a + b
...
11

I/O

Eff has a builting effect `io` with operations `print_value`, `print_string` and `read_string` which print to standard output and read from standard input. If you want to print something out you should not forget to first tell eff that you want to use the `io` effect:

>>> print_string "Hello, world!"
Runtime error: Name print_string is not defined. (L1, 1-12)
>>> with io: print_string "Hello, world!"
...
Hello, world!
()

Having to write “`with io`” all the time is annoying, so eff allows you to declare globally in a file (but not in the interactive shell) that you will use `io`:

with io ...

This is the same as writing `with io:` and indenting the rest of the file. Of course, there is nothing special about `io`. You can declare any effect instance for the rest of the file in the same way.

If you are using `io` for printing debugging information, don't! Eff has a special command `check` just for that purpose:

>>> check: "Hello, world!"
...
"Hello, world!"
>>> check: 1 + 2 + 3
...
6
>>> with io:
... check: print_string "Hello, world"
...
Operation print_string "Hello, world" (global)
()

The last example requires explanation: since `check` is intended for debugging it never handles operations. Instead it tells you that an operation occurred.

Let us write an effect which redirects output to a string:

>>> effect print_to_string:
... operation print_string x c: yield () (c ^ x)
... return () c: c
... finally f: f ""

We can use it to collect output to a string:

>>> a = (with print_to_string:
... print_string "Hello, world!"
... print_string "And good bye.")
...
>>> a
"Hello, world!And good bye."

For some reason people find the following example surprising:

>>> with io:
... print_string "Please enter your name:"
... response = handle with print_to_string:
... print_string "Hello "
... print_string (read_string ())
... print_string "!"
... print_string response
...
Please enter your name:
Matija
Hello Matija!
()

The mystery disappears when we realize that `print_string` on lines 4 and 6 get handled by `print_to_string`.

This is probably sufficient for a first introduction. We are still exploring the possibilities and we will post them when we think of something cool. For example, we know that delimited continuations are definable in eff (rather easily, since continuations are lurking around anyhow), as well as transactional memory and many other cool effects.

Comments

Ryan Ingram

28 September 2010 at 05:25

I'm really curious how you get your generic combine to work. I haven't had a chance to build
your system, but I really wonder what happens when you combine these two effects.

effect logger:
 operation print msg:
 (rest, x) = yield ()
 (msg : rest, x)

data Tree x = Leaf x | Node (Tree x) (Tree x)

effect treeChoice:
 operation choose (a,b):
 l = yield a
 r = yield b
 Node l r
 return x: Leaf x

I kind of want something that ends up like this effect:

effect choiceLogger:
 effect print msg =
 (log_result, result) = yield ()
 (msg ++ log_result, result)

 effect choose (a,b):
 l = yield a
 r = yield b
 ("", Node (l,r))

 return x = ("", Leaf x)

but I bet you get the logs shared between branches, in some type

Result = Leaf (String, a) | Node Result Result

instead of

Result = (String, Leaf a | Node Result Result)

Matija Pretnar

28 September 2010 at 08:32

An excellent question. I had no idea, so I tested it. I made some slight alterations to your
code: [sourcecode collapse="true"] def append msg log: match log: case "": msg case _: msg
^ ", " ^ log

effect logger: operation print msg: (log, result) = yield () (append msg log, result) return x: ("",
x)

effect treeChoice: operation choose (a, b): l = yield a r = yield b Node l r return x: Leaf x

effect choiceLogger: operation print msg: (log, result) = yield () (append msg log, result)
operation choose (a,b): l = yield a r = yield b ("", Node l r) return x: ("", Leaf x) </pre>

It turns out that you can get both result types you proposed, plus a third one, all depending
on the order in which you instantiate the effects.

If you first instantiate the logger, it will be shared between all the branches: [sourcecode
gutter="false" highlight="8,9"] >>> with logger... ... with treeChoice... ... x = choose (0, 1) ...
print ("x=" ^ to_string x) ... y = choose (2, 4) ... print ("y=" ^ to_string y) ... x + y ("x=0, y=2,
y=4, x=1, y=2, y=4", Node (Node (Leaf 2) (Leaf 4)) (Node (Leaf 3) (Leaf 5))) </pre>

If you first instantiate the choices, each one will have its own logger: [sourcecode
gutter="false" highlight="8,9"] >>> with treeChoice... ... with logger... ... x = choose (0, 1) ...
print ("x=" ^ to_string x) ... y = choose (2, 4) ... print ("y=" ^ to_string y) ... x + y Node (Node
(Leaf ("x=0, y=2", 2)) (Leaf ("x=0, y=4", 4))) (Node (Leaf ("x=1, y=2", 3)) (Leaf ("x=1, y=4",
5))) </pre>

In the combined effect you proposed, the logger gets reset at each node: [sourcecode
gutter="false" highlight="7,8"] >>> with choiceLogger... ... x = choose (0, 1) ... print ("x=" ^
to_string x) ... y = choose (2, 4) ... print ("y=" ^ to_string y) ... x + y ("", Node ("x=0", Node
("y=2", Leaf 2) ("y=4", Leaf 4)) ("x=1", Node ("y=2", Leaf 3) ("y=4", Leaf 5))) </pre>

Ryan Ingram

28 September 2010 at 09:08

Right, in the combined effect the sharing is explicit; it lets you distinguish between

print "0" choose (2,3)

and

choose (2,3)
print "0"

which otherwise commute (or print "0" twice to the single output log version).

Kay

29 September 2010 at 18:28

Something seems missing (compiled with Ocaml 3.10.2): ocamlbuild -use-menhir -
lib nums eff.byte + /usr/bin/ocamlc.opt -c -o lexer.cmo lexer.ml
File "lexer.mll", line 49, characters 26-34: Unbound value new_line
Command exited with code 2. make: *** [byte] Error 10

Andrej Bauer

29 September 2010 at 21:19

Yes, I think there was a change from Ocaml 3.10 to 3.11 in the Lexer module. Please use
Ocaml 3.11 or later. If there is sufficient interest, I can try making it Ocaml 3.10 compatible.

Martin Pärtel

01 October 2010 at 00:12

I managed to sort of implement a look-alike language as a pair of Haskell monads.

The min_choice example works well - the Haskell version is practically a line-for-line
translation. Unfortunately it failed to typecheck when I tried to program with more than one
value type, which I guess is unsurprising. It was a fun exercise nevertheless :)

You mention a "precise connection" between algebras and monads. What do you mean by
that? Is there more or less a straightforward mapping between eff and (Haskell) monads?

Ohad Kammar

02 October 2010 at 19:09

@Martin Pärtel, if I guessed right how your code looks like:

What interests me is how easy is it to port your code into another monad. That is, if I have a
monad that does something and I want to add non-determinism to it, how much scaffolding
will I have to build? How much scaffolding will I have to add in Eff (modulo making types
check)?

How to comment on this blog: At present comments are disabled because the relevant script died. If
you comment on this post on Mastodon and mention andrejbauer@mathstodon.xyz, I will gladly
respond. You are also welcome to contact me directly.

© 2023 Andrej Bauer

λ

Initial version of Eff had a Python-like syntax and was untyped

Posts Talks Publications Software About

← How eff handles built-in effects Programming with effects I: Theory →

Mathematics and Computation
A blog about mathemat ics for computers

Programming with effects II: Introducing eff
27 September 2010 Matija Pretnar Computation, Eff, Guest post, Programming, Software, Tutorial

[UPDATE 2012-03-08: since this post was written eff has changed considerably. For updated information, please visit the eff page.]

**This is a second post about the programming language eff. We covered the theory behind it in a previous post. Now we turn to the
programming language itself.

Please bear in mind that eff is an academic experiment. It is not meant to take over the world. Yet. We just wanted to show that the theoretical
ideas about the algebraic nature of computational effects can be put into practice. Eff has many superficial similarities with Haskell. This is no
surprise because there is a precise connection between algebras and monads. The main advantage of eff over Haskell is supposed to be the
ease with which computational effects can be combined.

Installation

If you have Mercurial installed (type hg at command prompt to find out) you can get eff like this:

$ hg clone http://hg.andrej.com/eff/ eff

Otherwise, you may also download the latest source as a .zip or .tar.gz, or visit the repository with your browser for other versions. Eff is
released under the simplified BSD License.

To compile eff you need Ocaml 3.11 or newer (there is an incompatibility with 3.10 in the Lexer module), ocamlbuild, and Menhir (which are
both likely to be bundled with Ocaml). Put the source in a suitable directory and compile it with make to create the Ocaml bytecode executable
eff.byte. When you run it you get an interactive shell without line editing capabilities. If you never make any typos that should be fine,
otherwise use one of the line editing wrappers, such as rlwrap or ledit. A handy shortcut eff runs eff.byte wrapped in rlwrap.

Syntax

Eff has Python-like syntax, with mandatory indentation. Tabs are not allowed in indentation, only spaces. The syntax is likely to change in the
future.

The basics

Before digging into the effects, let us look at some examples of purely functional code. Throughout the post, we present the examples as if they
were written in the interactive toplevel. For example:

>>> 1 + 2
3

You can also write code in a file and run it with eff, but in this case you should use the check command described below to see some output.

First, we have basic integer arithmetic with integers of unbounded size, booleans, strings, together with the basic operations:

>>> (1379610 + 9) * 80618151420468743021
111222333444555666777888999
>>> 1 == 2
False
>>> if 1 < 2:
... "one is less" ^ " than two"
... else:
... "you must be kidding"
"one is less than two"

We have tuples, lists, variants and records, all of which can be decomposed with pattern matching:

>>> (_, a, b) = (3, 4, 5)
>>> (a, b, a + b)
(4, 5, 9)
>>> 1 :: [2, 3, 4, 5] @ [6, 7, 8]
[1, 2, 3, 4, 5, 6, 7, 8]
>>> Tree l r = Tree (Leaf 4) (Tree (Leaf 5) (Leaf 6))
>>> r
Tree (Leaf 5) (Leaf 6)
>>> z = (re = 1, im = 5)
>>> (re = x, im = _) = z
>>> x
1
>>> (a, Foo (re = x), _) = ("banana", Foo (re=4, im=10), ["some", "stuff"])
>>> (a, x)
("banana", 4)

-abstraction is written like in Python, except you can start a block after the colon:

>>> (lambda x: (x, x + 1)) 5
(5, 6)
>>> f = lambda x (y, z):
... a = x + y
... b = z + a
... a * b
>>> f 1

>>> f 1 (2, 3)
18
</pre>

You can use patterns in λ-abstractions and write `lambda p q r: e` instead of `lambda p: lambda q: lambda r: e`. Note that eff is an expression-based language. There is no `return` command to return the result, even though for clarity we wrote explicit \mathtt{return}'s the previous post.

Recursive definitions are formed with `def`. Mutually recursive definitions are formed with `def`...`and`...`and`... In the following example we also see how to write match statements:

>>> def is_odd n:
... match n:
... case 0: False
... case n: is_even (n - 1)
... and is_even n:
... if n == 0: True
... else: is_odd (n - 1)
>>> is_odd 1234
False

Recursive definitions need not define functions:

>>> def one_two_three : [1, 2, 3] @ one_two_three
>>> one_two_three
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, ...]

For more examples, look at the file `prelude.eff`, which is loaded into eff before anything else happens.

How to use effects

One of eff's built-in effects are references (mutable store). To create a new reference instance `x` with initial value 5 we use the `with` statement:

>>> with ref 5 as x:
... a = x.lookup ()
... x.update (a + 3)
... x.update (x.lookup() + x.lookup())
... x.lookup()
Warning: Implicit sequencing between L4, 15-27 and L4, 28-37
16

In the above code `ref` is a function which accepts a value and returns an effect. The `with` creates a new instance of an effect and calls it `x`. The scope of the effect is the body of the `with` statement, i.e., `x` is a _local_ effect.

You will notice that eff prints a warning when it detects an ambiguous order of execution of operations. Sometimes it thinks that a piece of code contains effects when it actually does not and prints spurious warnings. You can use `pure e` to indicate that `e` does not contain any effects. We hope to get rid of `pure` once we have a type system for eff. Yes, eff currently does not check types. It does not seem easy to come up with a good type system for eff. We have found that the lack of types invites one to try all sorts of crazy things.

From now on, we are not going to show these warnings. If you do not like them, you can turn them off by passing the option `--careless` when starting eff.

We can create and mix several instances of `ref` (can you tell how many sequencing warnings would we get?):

>>> with ref 5 as x:
... with ref 10 as y:
... a = x.lookup () + y.lookup ()
... x.update (a + y.lookup ())
... x.lookup ()
25

If only one instance of an effect is needed, we need not give it a name. So we can have one nameless global `ref` instance:

>>> with ref 5:
... update (lookup () + 7)
... lookup ()
12

How to define effects

In eff we can define our own effects with the `effect` statement:

effect e:
 operation op_1 x: h_1(x)
 operation op_2 x: h_2(x)
 ...
 return x: r(x)
 finally x: f(x)

The above code defines an effect `e` with operations $\mathtt{op}_1, \mathtt{op}_2, \ldots$ which are handled by the code h_1, h_2, \ldots, respectively. The `return` clause tells us how to handle (pure) values. The `finally` clause tells us what should be done with the value, returned from the `with` statement that uses the effect `e`. In other words, it defines a wrapper which tells us how to “run” the effect as well as how to “get out” of it (compare to Haskell's [runState](http://www.haskell.org/haskellwiki/State_Monad) for the state monad).

If you leave out the `return` or `finally` clauses it is assumed that they are identity functions.

User-defined references

Let us convert the reference example from the [first post](http://math.andrej.com/2010/09/27/programming-with-effects-i-theory/) to eff code. Since eff already has a builtin effect called `ref` we call our references `myref`:

>>> effect myref s_initial:
... operation lookup (): (lambda s: yield s s)
... operation update s_new: (lambda s: yield () s_new)
... return x: (lambda s: x)
... finally f: f s_initial

or, more concisely but equivalently:

>>> effect myref s_initial:
... operation lookup () s: yield s s
... operation update s_new s: yield () s_new
... return x s: x
... finally f: f s_initial

This is the definition of a function `myref` which maps `s_initial` to an effect. The effect has two operations, `lookup` and `update`, which are handled just like the algebraic operations \mathtt{lookup} and \mathtt{update} from the previous post. Because we use the generic effect notation we cannot refer to the continuation directly, but rather indirectly with the keyword `yield`.

Recall that a program which uses a reference of type S and returns a value of type T is in fact a map $S \to T$. The `finally` clause tells us what should be done with such a function, namely it should be applied to the initial state. In other words, `finally` is just syntactic sugar for a wrapper around the `with` statement, so

>>> with myref 5:
... some code

is equivalent to

>>> (with myref_without_finally:
... some code) 5

Let us check how our references mix with the builtin ones:

>>> with myref 100 as u:
... with ref 10 as z:
... u.update (u.lookup () + z.lookup ())
... z.update (u.lookup () + z.lookup ())
... (u.lookup (), z.lookup ())
(110, 120)

Exactly as we would have expected. We can create any number of local references. We can even store them in a list, and they will work correctly as long as they do not escape the scope of their declaration.

Choice

As the next example we define a choice operation. In general such an operation is given some values (in our case two, but it could be a list) and it is supposed to choose one of them. There are many different criteria according to which we might make a choice: randomly, non-deterministically, so that the end result is minimized, etc.

Let us first define a boring choice, which always chooses the first value:

>>> effect left_choice:
... operation choose (a, _): yield a
>>> with left_choice:
... x = choose (3, 2)
... y = choose (5, 10)
... x + y
8

Observe how we used `yield` to pass the result of the operation back to the continuation. It may take a bit of getting used to `yield` if you are not familiar with continuations.

A more interesting kind of choice is “magical” choice with always selects that value which leads to the least possible end result:

>>> effect min_choice:
... operation choose (a, b):
... l = yield a
... r = yield b
... min l r
>>> with min_choice:
... x = choose (3, 2)
... y = choose (5, 10)
... x + y
7

Notice how we used `yield` twice in order to test both possibilities: what happens if we choose `a` and what happens if we choose `b`. The end result is a kind of depth-first search. Another test case:

>>> with min_choice:
... x = choose (3, 4)
... y = choose (5, 6)
... z = choose (10, 1)
... x * x - y * z * x + z * z * z - y * y * x
-151

It should be possible to write all sorts of “choose” and “search” operators in eff that allow the programmer to write backtracking code with seemingly magical choice operators.

What if we wanted to collect _all_ possible results rather than just a particular one? No problem:

>>> effect all_choices:
... operation choose (a, b):
... l = yield a
... r = yield b
... l @ r
... return v: [v]
>>> with all_choices:
... x = choose (3, 2)
... y = choose (5, 10)
... x + y
[8, 13, 7, 12]

In this case, the operation first yields its left argument to the continuation and gets back a list `l` of possible results. It repeats the same with its right argument to get back a list `r`, and returns the concatenated list `l @ r`. The `return` clause tells us that a pure value gives just one choice.

Handlers

When we define an effect we tell how its operations are handled by default. We may also wrap a piece of code in a handler that temporarily redefines the behavior of operations. Here is a handler which intercepts lookups to reference `z` and always adds `1` to the actual value:

>>> with ref 10 as z:
... y = z.lookup ()
... handle:
... z.update 100
... x = z.lookup ()
... (x, y)
... with:
... operation z.lookup ():
... a = z.lookup () # this calls the outer lookup
... yield (a + 1)
(101, 10)

Exceptions

Eff does not have builtin exceptions. The \mathtt{fail} exception could be defined like this:

>>> effect maybe:
... operation fail(): Nothing
... return x: Just x
...
>>> with maybe:
... a = 5
... b = 6
... fail ()
... a + b
...
Nothing
>>> with maybe:
... a = 5
... b = 6
... a + b
...
Just 11

We are reminded of Haskell's Maybe monad, and not without reason. The cool thing is that exceptions act like exceptions within their scope and like optional values outside the scope. Thus we can handle exceptions inside their scope just as expected:

>>> with maybe:
... a = 5
... handle:
... b = 6
... fail ()
... a + b
... with:
... operation fail(): 42
...
Just 42

We can also have a version of `maybe` with default values:

>>> effect default x:
... operation fail(): x
...
>>> with default 42:
... a = 5
... b = 6
... fail ()
... a + b
...
42
>>> with default 42:
... a = 5
... b = 6
... a + b
...
11

I/O

Eff has a builting effect `io` with operations `print_value`, `print_string` and `read_string` which print to standard output and read from standard input. If you want to print something out you should not forget to first tell eff that you want to use the `io` effect:

>>> print_string "Hello, world!"
Runtime error: Name print_string is not defined. (L1, 1-12)
>>> with io: print_string "Hello, world!"
...
Hello, world!
()

Having to write “`with io`” all the time is annoying, so eff allows you to declare globally in a file (but not in the interactive shell) that you will use `io`:

with io ...

This is the same as writing `with io:` and indenting the rest of the file. Of course, there is nothing special about `io`. You can declare any effect instance for the rest of the file in the same way.

If you are using `io` for printing debugging information, don't! Eff has a special command `check` just for that purpose:

>>> check: "Hello, world!"
...
"Hello, world!"
>>> check: 1 + 2 + 3
...
6
>>> with io:
... check: print_string "Hello, world"
...
Operation print_string "Hello, world" (global)
()

The last example requires explanation: since `check` is intended for debugging it never handles operations. Instead it tells you that an operation occurred.

Let us write an effect which redirects output to a string:

>>> effect print_to_string:
... operation print_string x c: yield () (c ^ x)
... return () c: c
... finally f: f ""

We can use it to collect output to a string:

>>> a = (with print_to_string:
... print_string "Hello, world!"
... print_string "And good bye.")
...
>>> a
"Hello, world!And good bye."

For some reason people find the following example surprising:

>>> with io:
... print_string "Please enter your name:"
... response = handle with print_to_string:
... print_string "Hello "
... print_string (read_string ())
... print_string "!"
... print_string response
...
Please enter your name:
Matija
Hello Matija!
()

The mystery disappears when we realize that `print_string` on lines 4 and 6 get handled by `print_to_string`.

This is probably sufficient for a first introduction. We are still exploring the possibilities and we will post them when we think of something cool. For example, we know that delimited continuations are definable in eff (rather easily, since continuations are lurking around anyhow), as well as transactional memory and many other cool effects.

Comments

Ryan Ingram

28 September 2010 at 05:25

I'm really curious how you get your generic combine to work. I haven't had a chance to build
your system, but I really wonder what happens when you combine these two effects.

effect logger:
 operation print msg:
 (rest, x) = yield ()
 (msg : rest, x)

data Tree x = Leaf x | Node (Tree x) (Tree x)

effect treeChoice:
 operation choose (a,b):
 l = yield a
 r = yield b
 Node l r
 return x: Leaf x

I kind of want something that ends up like this effect:

effect choiceLogger:
 effect print msg =
 (log_result, result) = yield ()
 (msg ++ log_result, result)

 effect choose (a,b):
 l = yield a
 r = yield b
 ("", Node (l,r))

 return x = ("", Leaf x)

but I bet you get the logs shared between branches, in some type

Result = Leaf (String, a) | Node Result Result

instead of

Result = (String, Leaf a | Node Result Result)

Matija Pretnar

28 September 2010 at 08:32

An excellent question. I had no idea, so I tested it. I made some slight alterations to your
code: [sourcecode collapse="true"] def append msg log: match log: case "": msg case _: msg
^ ", " ^ log

effect logger: operation print msg: (log, result) = yield () (append msg log, result) return x: ("",
x)

effect treeChoice: operation choose (a, b): l = yield a r = yield b Node l r return x: Leaf x

effect choiceLogger: operation print msg: (log, result) = yield () (append msg log, result)
operation choose (a,b): l = yield a r = yield b ("", Node l r) return x: ("", Leaf x) </pre>

It turns out that you can get both result types you proposed, plus a third one, all depending
on the order in which you instantiate the effects.

If you first instantiate the logger, it will be shared between all the branches: [sourcecode
gutter="false" highlight="8,9"] >>> with logger... ... with treeChoice... ... x = choose (0, 1) ...
print ("x=" ^ to_string x) ... y = choose (2, 4) ... print ("y=" ^ to_string y) ... x + y ("x=0, y=2,
y=4, x=1, y=2, y=4", Node (Node (Leaf 2) (Leaf 4)) (Node (Leaf 3) (Leaf 5))) </pre>

If you first instantiate the choices, each one will have its own logger: [sourcecode
gutter="false" highlight="8,9"] >>> with treeChoice... ... with logger... ... x = choose (0, 1) ...
print ("x=" ^ to_string x) ... y = choose (2, 4) ... print ("y=" ^ to_string y) ... x + y Node (Node
(Leaf ("x=0, y=2", 2)) (Leaf ("x=0, y=4", 4))) (Node (Leaf ("x=1, y=2", 3)) (Leaf ("x=1, y=4",
5))) </pre>

In the combined effect you proposed, the logger gets reset at each node: [sourcecode
gutter="false" highlight="7,8"] >>> with choiceLogger... ... x = choose (0, 1) ... print ("x=" ^
to_string x) ... y = choose (2, 4) ... print ("y=" ^ to_string y) ... x + y ("", Node ("x=0", Node
("y=2", Leaf 2) ("y=4", Leaf 4)) ("x=1", Node ("y=2", Leaf 3) ("y=4", Leaf 5))) </pre>

Ryan Ingram

28 September 2010 at 09:08

Right, in the combined effect the sharing is explicit; it lets you distinguish between

print "0" choose (2,3)

and

choose (2,3)
print "0"

which otherwise commute (or print "0" twice to the single output log version).

Kay

29 September 2010 at 18:28

Something seems missing (compiled with Ocaml 3.10.2): ocamlbuild -use-menhir -
lib nums eff.byte + /usr/bin/ocamlc.opt -c -o lexer.cmo lexer.ml
File "lexer.mll", line 49, characters 26-34: Unbound value new_line
Command exited with code 2. make: *** [byte] Error 10

Andrej Bauer

29 September 2010 at 21:19

Yes, I think there was a change from Ocaml 3.10 to 3.11 in the Lexer module. Please use
Ocaml 3.11 or later. If there is sufficient interest, I can try making it Ocaml 3.10 compatible.

Martin Pärtel

01 October 2010 at 00:12

I managed to sort of implement a look-alike language as a pair of Haskell monads.

The min_choice example works well - the Haskell version is practically a line-for-line
translation. Unfortunately it failed to typecheck when I tried to program with more than one
value type, which I guess is unsurprising. It was a fun exercise nevertheless :)

You mention a "precise connection" between algebras and monads. What do you mean by
that? Is there more or less a straightforward mapping between eff and (Haskell) monads?

Ohad Kammar

02 October 2010 at 19:09

@Martin Pärtel, if I guessed right how your code looks like:

What interests me is how easy is it to port your code into another monad. That is, if I have a
monad that does something and I want to add non-determinism to it, how much scaffolding
will I have to build? How much scaffolding will I have to add in Eff (modulo making types
check)?

How to comment on this blog: At present comments are disabled because the relevant script died. If
you comment on this post on Mastodon and mention andrejbauer@mathstodon.xyz, I will gladly
respond. You are also welcome to contact me directly.

© 2023 Andrej Bauer

λ

effect state x: operation get (): (lambda s: yield s s) operation set s_new: (lambda s: yield () s_new)
 return y: (lambda s: (s, y)) finally f: f x

Next version added types and moved much closer to OCaml

Posts Talks Publications Software About

← The topology of the set of all types Programming with Algebraic Effects an... →

Mathematics and Computation
A blog about mathemat ics for computers

Eff 3.0
08 March 2012 Andrej Bauer Eff, News

Matija and I are pleased to announce a new major release of the eff programming language.

In the last year or so eff has matured considerably:

It now looks and feels like OCaml, so you won't have to learn yet another syntax.
It has static typing with parametric polymorphism and type inference.
Eff now clearly separates three basic concepts: effect types, effect instances, and handlers.
How eff works is explained in our paper on Programming with Algebraic Effects and Handlers.
We moved the source code to GitHub, so go ahead and fork it!

Comments

Dan Doel

02 April 2012 at 22:05

A question asked in #haskell a few days back sparked some thinking about Eff for me. The
question was:

Why can't we use a free monad over F X = Get (S -> X) | Put S X for state?

The answer is that this isn't specifying the algebra of a mutable cell precisely, whereas S ->
S * X does. We want Get and Put to interact in certain ways, and the proper algebraic
theory is a quotient of the free algebraic theory over the two operations.

But, it occurred to me that the free monad is exactly what Eff does. You specify that get and
put exist, but there is no relation between them, unless I'm missing something. And
presumably the handlers would be able to observe various sequences of gets and puts that
would be indistinguishable under the quotient?

So, are there plans to add equations (or some equivalent) to the algebraic theories in Eff. Or
is my recollection of what all is possible in Eff just fuzzy, and there is already a way to handle
this properly?

Andrej Bauer

02 April 2012 at 22:37

@Dan: you raise an important question, and it is important to understand the answer: the
equations have no place in Eff. The equations are about what is expected of a correct
implementation, i.e., they are specifications. Equations do not tell us how to compute things
(except in the lucky case when they can be directed so that they become reduction rules).
How is Eff, or any other language, supposed to enforce equations?

In your concrete example, the relation between Put and Get is captured by the handler
which handles them. There are many handlers, some of which satisfy the expected
equations. Those can be said to be correct for the given equations.

I do not undertand your last sentence about fuzziness.

Dan Doel

03 April 2012 at 00:37

There are plenty of languages that allow you to state and enforce equations. Most
dependently typed languages, for instance. Also Maude, I believe. And Neel Krishnaswami
has a paper on adding equations to System F. I don't know that any of that would be suitable
for Eff, though.

In the specific example, state algebras are characterized by the typical state monad, and the
free state algebra over a type A is S -> S * A. So if handlers are homomorphisms from a free
algebra to another algebra, then that should be their source for the equation-incorporating
state case. However I don't know how to determine this from the operations + equations; it
doesn't seems like a tractable problem. And even were that solved, ensuring that the target
is an algebra and that the definition is a proper homomorphism probably isn't automatic.

The fuzziness sentence was just hedging against my having forgotten some feature of Eff
that let you specify equations somehow. It's been a while since I read about it.

Andrej Bauer

03 April 2012 at 01:35

Ah yes. Eff is a programming language in the traditional sense of the word, under which Coq,
Agda, etc., are proof assistants and not programming languages.

Perhaps it is useful to think of things in the following way: in Eff the valid equations are those
induced by handlers. Does that make you happier?

Mike

17 June 2014 at 01:55

I have one question: are there differences between resources and mutable references? Are
resources superior to mutables or not?

Andrej Bauer

17 June 2014 at 12:05

Resources are slightly more general. You can implemented references using resources, but
you can also use resources for other "state-like" things. You can impement lazy values using
resources, as well as persistent data structures and self-modifying structures, such as splay
trees. Of course, you can do all of this if you have references, too. So in some sense
resources and references are equally expressive. Note that there can also be primitive
(builtin) resources that actually interact with the environment, such as streams of
randomness, or communication channels.

How to comment on this blog: At present comments are disabled because the relevant script died. If
you comment on this post on Mastodon and mention andrejbauer@mathstodon.xyz, I will gladly
respond. You are also welcome to contact me directly.

© 2023 Andrej Bauer

Next version added types and moved much closer to OCaml

Posts Talks Publications Software About

← The topology of the set of all types Programming with Algebraic Effects an... →

Mathematics and Computation
A blog about mathemat ics for computers

Eff 3.0
08 March 2012 Andrej Bauer Eff, News

Matija and I are pleased to announce a new major release of the eff programming language.

In the last year or so eff has matured considerably:

It now looks and feels like OCaml, so you won't have to learn yet another syntax.
It has static typing with parametric polymorphism and type inference.
Eff now clearly separates three basic concepts: effect types, effect instances, and handlers.
How eff works is explained in our paper on Programming with Algebraic Effects and Handlers.
We moved the source code to GitHub, so go ahead and fork it!

Comments

Dan Doel

02 April 2012 at 22:05

A question asked in #haskell a few days back sparked some thinking about Eff for me. The
question was:

Why can't we use a free monad over F X = Get (S -> X) | Put S X for state?

The answer is that this isn't specifying the algebra of a mutable cell precisely, whereas S ->
S * X does. We want Get and Put to interact in certain ways, and the proper algebraic
theory is a quotient of the free algebraic theory over the two operations.

But, it occurred to me that the free monad is exactly what Eff does. You specify that get and
put exist, but there is no relation between them, unless I'm missing something. And
presumably the handlers would be able to observe various sequences of gets and puts that
would be indistinguishable under the quotient?

So, are there plans to add equations (or some equivalent) to the algebraic theories in Eff. Or
is my recollection of what all is possible in Eff just fuzzy, and there is already a way to handle
this properly?

Andrej Bauer

02 April 2012 at 22:37

@Dan: you raise an important question, and it is important to understand the answer: the
equations have no place in Eff. The equations are about what is expected of a correct
implementation, i.e., they are specifications. Equations do not tell us how to compute things
(except in the lucky case when they can be directed so that they become reduction rules).
How is Eff, or any other language, supposed to enforce equations?

In your concrete example, the relation between Put and Get is captured by the handler
which handles them. There are many handlers, some of which satisfy the expected
equations. Those can be said to be correct for the given equations.

I do not undertand your last sentence about fuzziness.

Dan Doel

03 April 2012 at 00:37

There are plenty of languages that allow you to state and enforce equations. Most
dependently typed languages, for instance. Also Maude, I believe. And Neel Krishnaswami
has a paper on adding equations to System F. I don't know that any of that would be suitable
for Eff, though.

In the specific example, state algebras are characterized by the typical state monad, and the
free state algebra over a type A is S -> S * A. So if handlers are homomorphisms from a free
algebra to another algebra, then that should be their source for the equation-incorporating
state case. However I don't know how to determine this from the operations + equations; it
doesn't seems like a tractable problem. And even were that solved, ensuring that the target
is an algebra and that the definition is a proper homomorphism probably isn't automatic.

The fuzziness sentence was just hedging against my having forgotten some feature of Eff
that let you specify equations somehow. It's been a while since I read about it.

Andrej Bauer

03 April 2012 at 01:35

Ah yes. Eff is a programming language in the traditional sense of the word, under which Coq,
Agda, etc., are proof assistants and not programming languages.

Perhaps it is useful to think of things in the following way: in Eff the valid equations are those
induced by handlers. Does that make you happier?

Mike

17 June 2014 at 01:55

I have one question: are there differences between resources and mutable references? Are
resources superior to mutables or not?

Andrej Bauer

17 June 2014 at 12:05

Resources are slightly more general. You can implemented references using resources, but
you can also use resources for other "state-like" things. You can impement lazy values using
resources, as well as persistent data structures and self-modifying structures, such as splay
trees. Of course, you can do all of this if you have references, too. So in some sense
resources and references are equally expressive. Note that there can also be primitive
(builtin) resources that actually interact with the environment, such as streams of
randomness, or communication channels.

How to comment on this blog: At present comments are disabled because the relevant script died. If
you comment on this post on Mastodon and mention andrejbauer@mathstodon.xyz, I will gladly
respond. You are also welcome to contact me directly.

© 2023 Andrej Bauer

type 'a ref = effect operation get: unit -> 'a operation set: 'a -> unitend

let state r x = handler | r#get () k -> (fun s -> k s s)
 | r#set s' k -> (fun s -> k () s')
 | val y -> (fun s -> (y, s))
 | finally f -> f x

Wadler

Comprehending
monads

1991

Moggi

Computational lambda-calculus
and monads

1989

Plotkin & P.

Handlers of
algebraic effects

2009

The new version of Eff also had an accompanying research paper

Journal of Logical and Algebraic Methods in Programming 84 (2015) 108–123

Contents lists available at ScienceDirectJournal of Logical and Algebraic Methods inProgramming
www.elsevier.com/locate/jlamp

Programming with algebraic effects and handlersAndrej Bauer, Matija Pretnar ∗
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

a r t i c l e i n f o
a b s t r a c tArticle history:

Received 29 February 2012Received in revised form 12 November 2013Accepted 22 February 2014Available online 20 March 2014

Eff is a programming language based on the algebraic approach to computational effects,

in which effects are viewed as algebraic operations and effect handlers as homomorphisms

from free algebras. Eff supports first-class effects and handlers through which we may eas-

ily define new computational effects, seamlessly combine existing ones, and handle them

in novel ways. We give a denotational semantics of Eff and discuss a prototype implemen-

tation based on it. Through examples we demonstrate how the standard effects are treated

in Eff, and how Eff supports programming techniques that use various forms of delimited

continuations, such as backtracking, breadth-first search, selection functionals, cooperative

multi-threading, and others.

© 2014 Elsevier Inc. All rights reserved.0. Introduction

Eff is a programming language based on the algebraic approach to effects, in which computational effects are modeled as

operations of a suitably chosen algebraic theory [12]. Common computational effects such as input, output, state, exceptions,

and nondeterminism, are of this kind. Continuations are not algebraic [4], but they turn out to be naturally supported by Eff

as well. Effect handlers are a related notion [14,19] which encompasses exception handlers, stream redirection, transactions,

backtracking, and many others. These are modeled as homomorphisms induced by the universal property of free algebras.

Each algebraic theory gives rise to a monad [1,11], although the operations cannot be reconstructed from it. Algebraic

theories have their own virtues, though. Effects are combined more easily than monads [5], and the interaction between

effects and handlers offers new ways of programming. An experiment in the design of a programming language based on

the algebraic approach therefore seems warranted.
Philip Wadler once opined [21] that monads as a programming concept would not have been discovered without their

category-theoretic counterparts, but once they were, programmers could live in blissful ignorance of their origin. Because

the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of programmers, trusting that

connoisseurs will recognize the connections with the underlying mathematical theory.

The paper is organized as follows. Section 1 describes the syntax of Eff, Section 2 informally introduces constructs specific

to Eff, Section 3 is devoted to type checking, in Section 4 we give a domain-theoretic semantics of Eff, and in Section 5 we

briefly discuss our prototype implementation. The examples in Section 6 demonstrate how effects and handlers can be

used to produce standard computational effects, such as exceptions, state, input and output, as well as their variations and

combinations. Further examples show how Eff ’s delimited control capabilities are used for nondeterministic and probabilistic

choice, backtracking, selection functionals, and cooperative multi-threading. We conclude with thoughts about the future

work.
The implementation of Eff is freely available at http://www.eff-lang.org/.* Corresponding author.E-mail addresses: andrej@andrej.com (A. Bauer), matija@pretnar.info (M. Pretnar).

http://dx.doi.org/10.1016/j.jlamp.2014.02.0012352-2208/© 2014 Elsevier Inc. All rights reserved.

Wadler

Comprehending
monads

1991

Moggi

Computational lambda-calculus
and monads

1989

Plotkin & P.

Handlers of
algebraic effects

2009

The new version of Eff also had an accompanying research paper

Journal of Logical and Algebraic Methods in Programming 84 (2015) 108–123

Contents lists available at ScienceDirectJournal of Logical and Algebraic Methods inProgramming
www.elsevier.com/locate/jlamp

Programming with algebraic effects and handlersAndrej Bauer, Matija Pretnar ∗
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

a r t i c l e i n f o
a b s t r a c tArticle history:

Received 29 February 2012Received in revised form 12 November 2013Accepted 22 February 2014Available online 20 March 2014

Eff is a programming language based on the algebraic approach to computational effects,

in which effects are viewed as algebraic operations and effect handlers as homomorphisms

from free algebras. Eff supports first-class effects and handlers through which we may eas-

ily define new computational effects, seamlessly combine existing ones, and handle them

in novel ways. We give a denotational semantics of Eff and discuss a prototype implemen-

tation based on it. Through examples we demonstrate how the standard effects are treated

in Eff, and how Eff supports programming techniques that use various forms of delimited

continuations, such as backtracking, breadth-first search, selection functionals, cooperative

multi-threading, and others.

© 2014 Elsevier Inc. All rights reserved.0. Introduction

Eff is a programming language based on the algebraic approach to effects, in which computational effects are modeled as

operations of a suitably chosen algebraic theory [12]. Common computational effects such as input, output, state, exceptions,

and nondeterminism, are of this kind. Continuations are not algebraic [4], but they turn out to be naturally supported by Eff

as well. Effect handlers are a related notion [14,19] which encompasses exception handlers, stream redirection, transactions,

backtracking, and many others. These are modeled as homomorphisms induced by the universal property of free algebras.

Each algebraic theory gives rise to a monad [1,11], although the operations cannot be reconstructed from it. Algebraic

theories have their own virtues, though. Effects are combined more easily than monads [5], and the interaction between

effects and handlers offers new ways of programming. An experiment in the design of a programming language based on

the algebraic approach therefore seems warranted.
Philip Wadler once opined [21] that monads as a programming concept would not have been discovered without their

category-theoretic counterparts, but once they were, programmers could live in blissful ignorance of their origin. Because

the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of programmers, trusting that

connoisseurs will recognize the connections with the underlying mathematical theory.

The paper is organized as follows. Section 1 describes the syntax of Eff, Section 2 informally introduces constructs specific

to Eff, Section 3 is devoted to type checking, in Section 4 we give a domain-theoretic semantics of Eff, and in Section 5 we

briefly discuss our prototype implementation. The examples in Section 6 demonstrate how effects and handlers can be

used to produce standard computational effects, such as exceptions, state, input and output, as well as their variations and

combinations. Further examples show how Eff ’s delimited control capabilities are used for nondeterministic and probabilistic

choice, backtracking, selection functionals, and cooperative multi-threading. We conclude with thoughts about the future

work.
The implementation of Eff is freely available at http://www.eff-lang.org/.* Corresponding author.E-mail addresses: andrej@andrej.com (A. Bauer), matija@pretnar.info (M. Pretnar).

http://dx.doi.org/10.1016/j.jlamp.2014.02.0012352-2208/© 2014 Elsevier Inc. All rights reserved.

Journal of Logical and Algebraic Methods in Programming 84 (2015) 108–123

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming

www.elsevier.com/locate/jlamp

Programming with algebraic effects and handlers

Andrej Bauer, Matija Pretnar ∗

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

a r t i c l e i n f o a b s t r a c t

Article history:

Received 29 February 2012

Received in revised form 12 November 2013

Accepted 22 February 2014

Available online 20 March 2014

Eff is a programming language based on the algebraic approach to computational effects,

in which effects are viewed as algebraic operations and effect handlers as homomorphisms

from free algebras. Eff supports first-class effects and handlers through which we may eas-

ily define new computational effects, seamlessly combine existing ones, and handle them

in novel ways. We give a denotational semantics of Eff and discuss a prototype implemen-

tation based on it. Through examples we demonstrate how the standard effects are treated

in Eff, and how Eff supports programming techniques that use various forms of delimited

continuations, such as backtracking, breadth-first search, selection functionals, cooperative

multi-threading, and others. © 2014 Elsevier Inc. All rights reserved.

0. Introduction

Eff is a programming language based on the algebraic approach to effects, in which computational effects are modeled as

operations of a suitably chosen algebraic theory [12]. Common computational effects such as input, output, state, exceptions,

and nondeterminism, are of this kind. Continuations are not algebraic [4], but they turn out to be naturally supported by Eff

as well. Effect handlers are a related notion [14,19] which encompasses exception handlers, stream redirection, transactions,

backtracking, and many others. These are modeled as homomorphisms induced by the universal property of free algebras.

Each algebraic theory gives rise to a monad [1,11], although the operations cannot be reconstructed from it. Algebraic

theories have their own virtues, though. Effects are combined more easily than monads [5], and the interaction between

effects and handlers offers new ways of programming. An experiment in the design of a programming language based on

the algebraic approach therefore seems warranted.

Philip Wadler once opined [21] that monads as a programming concept would not have been discovered without their

category-theoretic counterparts, but once they were, programmers could live in blissful ignorance of their origin. Because

the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of programmers, trusting that

connoisseurs will recognize the connections with the underlying mathematical theory.

The paper is organized as follows. Section 1 describes the syntax of Eff, Section 2 informally introduces constructs specific

to Eff, Section 3 is devoted to type checking, in Section 4 we give a domain-theoretic semantics of Eff, and in Section 5 we

briefly discuss our prototype implementation. The examples in Section 6 demonstrate how effects and handlers can be

used to produce standard computational effects, such as exceptions, state, input and output, as well as their variations and

combinations. Further examples show how Eff ’s delimited control capabilities are used for nondeterministic and probabilistic

choice, backtracking, selection functionals, and cooperative multi-threading. We conclude with thoughts about the future

work.
The implementation of Eff is freely available at http://www.eff-lang.org/.

* Corresponding author.

E-mail addresses: andrej@andrej.com (A. Bauer), matija@pretnar.info (M. Pretnar).

http://dx.doi.org/10.1016/j.jlamp.2014.02.001

2352-2208/© 2014 Elsevier Inc. All rights reserved.

Wadler

Comprehending
monads

1991

Moggi

Computational lambda-calculus
and monads

1989

Plotkin & P.

Handlers of
algebraic effects

2009

The new version of Eff also had an accompanying research paper

Journal of Logical and Algebraic Methods in Programming 84 (2015) 108–123

Contents lists available at ScienceDirectJournal of Logical and Algebraic Methods inProgramming
www.elsevier.com/locate/jlamp

Programming with algebraic effects and handlersAndrej Bauer, Matija Pretnar ∗
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

a r t i c l e i n f o
a b s t r a c tArticle history:

Received 29 February 2012Received in revised form 12 November 2013Accepted 22 February 2014Available online 20 March 2014

Eff is a programming language based on the algebraic approach to computational effects,

in which effects are viewed as algebraic operations and effect handlers as homomorphisms

from free algebras. Eff supports first-class effects and handlers through which we may eas-

ily define new computational effects, seamlessly combine existing ones, and handle them

in novel ways. We give a denotational semantics of Eff and discuss a prototype implemen-

tation based on it. Through examples we demonstrate how the standard effects are treated

in Eff, and how Eff supports programming techniques that use various forms of delimited

continuations, such as backtracking, breadth-first search, selection functionals, cooperative

multi-threading, and others.

© 2014 Elsevier Inc. All rights reserved.0. Introduction

Eff is a programming language based on the algebraic approach to effects, in which computational effects are modeled as

operations of a suitably chosen algebraic theory [12]. Common computational effects such as input, output, state, exceptions,

and nondeterminism, are of this kind. Continuations are not algebraic [4], but they turn out to be naturally supported by Eff

as well. Effect handlers are a related notion [14,19] which encompasses exception handlers, stream redirection, transactions,

backtracking, and many others. These are modeled as homomorphisms induced by the universal property of free algebras.

Each algebraic theory gives rise to a monad [1,11], although the operations cannot be reconstructed from it. Algebraic

theories have their own virtues, though. Effects are combined more easily than monads [5], and the interaction between

effects and handlers offers new ways of programming. An experiment in the design of a programming language based on

the algebraic approach therefore seems warranted.
Philip Wadler once opined [21] that monads as a programming concept would not have been discovered without their

category-theoretic counterparts, but once they were, programmers could live in blissful ignorance of their origin. Because

the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of programmers, trusting that

connoisseurs will recognize the connections with the underlying mathematical theory.

The paper is organized as follows. Section 1 describes the syntax of Eff, Section 2 informally introduces constructs specific

to Eff, Section 3 is devoted to type checking, in Section 4 we give a domain-theoretic semantics of Eff, and in Section 5 we

briefly discuss our prototype implementation. The examples in Section 6 demonstrate how effects and handlers can be

used to produce standard computational effects, such as exceptions, state, input and output, as well as their variations and

combinations. Further examples show how Eff ’s delimited control capabilities are used for nondeterministic and probabilistic

choice, backtracking, selection functionals, and cooperative multi-threading. We conclude with thoughts about the future

work.
The implementation of Eff is freely available at http://www.eff-lang.org/.* Corresponding author.E-mail addresses: andrej@andrej.com (A. Bauer), matija@pretnar.info (M. Pretnar).

http://dx.doi.org/10.1016/j.jlamp.2014.02.0012352-2208/© 2014 Elsevier Inc. All rights reserved.

Journal of Logical and Algebraic Methods in Programming 84 (2015) 108–123

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming

www.elsevier.com/locate/jlamp

Programming with algebraic effects and handlers

Andrej Bauer, Matija Pretnar ∗

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

a r t i c l e i n f o a b s t r a c t

Article history:

Received 29 February 2012

Received in revised form 12 November 2013

Accepted 22 February 2014

Available online 20 March 2014

Eff is a programming language based on the algebraic approach to computational effects,

in which effects are viewed as algebraic operations and effect handlers as homomorphisms

from free algebras. Eff supports first-class effects and handlers through which we may eas-

ily define new computational effects, seamlessly combine existing ones, and handle them

in novel ways. We give a denotational semantics of Eff and discuss a prototype implemen-

tation based on it. Through examples we demonstrate how the standard effects are treated

in Eff, and how Eff supports programming techniques that use various forms of delimited

continuations, such as backtracking, breadth-first search, selection functionals, cooperative

multi-threading, and others. © 2014 Elsevier Inc. All rights reserved.

0. Introduction

Eff is a programming language based on the algebraic approach to effects, in which computational effects are modeled as

operations of a suitably chosen algebraic theory [12]. Common computational effects such as input, output, state, exceptions,

and nondeterminism, are of this kind. Continuations are not algebraic [4], but they turn out to be naturally supported by Eff

as well. Effect handlers are a related notion [14,19] which encompasses exception handlers, stream redirection, transactions,

backtracking, and many others. These are modeled as homomorphisms induced by the universal property of free algebras.

Each algebraic theory gives rise to a monad [1,11], although the operations cannot be reconstructed from it. Algebraic

theories have their own virtues, though. Effects are combined more easily than monads [5], and the interaction between

effects and handlers offers new ways of programming. An experiment in the design of a programming language based on

the algebraic approach therefore seems warranted.

Philip Wadler once opined [21] that monads as a programming concept would not have been discovered without their

category-theoretic counterparts, but once they were, programmers could live in blissful ignorance of their origin. Because

the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of programmers, trusting that

connoisseurs will recognize the connections with the underlying mathematical theory.

The paper is organized as follows. Section 1 describes the syntax of Eff, Section 2 informally introduces constructs specific

to Eff, Section 3 is devoted to type checking, in Section 4 we give a domain-theoretic semantics of Eff, and in Section 5 we

briefly discuss our prototype implementation. The examples in Section 6 demonstrate how effects and handlers can be

used to produce standard computational effects, such as exceptions, state, input and output, as well as their variations and

combinations. Further examples show how Eff ’s delimited control capabilities are used for nondeterministic and probabilistic

choice, backtracking, selection functionals, and cooperative multi-threading. We conclude with thoughts about the future

work.
The implementation of Eff is freely available at http://www.eff-lang.org/.

* Corresponding author.

E-mail addresses: andrej@andrej.com (A. Bauer), matija@pretnar.info (M. Pretnar).

http://dx.doi.org/10.1016/j.jlamp.2014.02.001

2352-2208/© 2014 Elsevier Inc. All rights reserved.

Wadler

Comprehending
monads

1991

Moggi

Computational lambda-calculus
and monads

1989

Plotkin & P.

Handlers of
algebraic effects

2009

The new version of Eff also had an accompanying research paper

Journal of Logical and Algebraic Methods in Programming 84 (2015) 108–123

Contents lists available at ScienceDirectJournal of Logical and Algebraic Methods inProgramming
www.elsevier.com/locate/jlamp

Programming with algebraic effects and handlersAndrej Bauer, Matija Pretnar ∗
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

a r t i c l e i n f o
a b s t r a c tArticle history:

Received 29 February 2012Received in revised form 12 November 2013Accepted 22 February 2014Available online 20 March 2014

Eff is a programming language based on the algebraic approach to computational effects,

in which effects are viewed as algebraic operations and effect handlers as homomorphisms

from free algebras. Eff supports first-class effects and handlers through which we may eas-

ily define new computational effects, seamlessly combine existing ones, and handle them

in novel ways. We give a denotational semantics of Eff and discuss a prototype implemen-

tation based on it. Through examples we demonstrate how the standard effects are treated

in Eff, and how Eff supports programming techniques that use various forms of delimited

continuations, such as backtracking, breadth-first search, selection functionals, cooperative

multi-threading, and others.

© 2014 Elsevier Inc. All rights reserved.0. Introduction

Eff is a programming language based on the algebraic approach to effects, in which computational effects are modeled as

operations of a suitably chosen algebraic theory [12]. Common computational effects such as input, output, state, exceptions,

and nondeterminism, are of this kind. Continuations are not algebraic [4], but they turn out to be naturally supported by Eff

as well. Effect handlers are a related notion [14,19] which encompasses exception handlers, stream redirection, transactions,

backtracking, and many others. These are modeled as homomorphisms induced by the universal property of free algebras.

Each algebraic theory gives rise to a monad [1,11], although the operations cannot be reconstructed from it. Algebraic

theories have their own virtues, though. Effects are combined more easily than monads [5], and the interaction between

effects and handlers offers new ways of programming. An experiment in the design of a programming language based on

the algebraic approach therefore seems warranted.
Philip Wadler once opined [21] that monads as a programming concept would not have been discovered without their

category-theoretic counterparts, but once they were, programmers could live in blissful ignorance of their origin. Because

the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of programmers, trusting that

connoisseurs will recognize the connections with the underlying mathematical theory.

The paper is organized as follows. Section 1 describes the syntax of Eff, Section 2 informally introduces constructs specific

to Eff, Section 3 is devoted to type checking, in Section 4 we give a domain-theoretic semantics of Eff, and in Section 5 we

briefly discuss our prototype implementation. The examples in Section 6 demonstrate how effects and handlers can be

used to produce standard computational effects, such as exceptions, state, input and output, as well as their variations and

combinations. Further examples show how Eff ’s delimited control capabilities are used for nondeterministic and probabilistic

choice, backtracking, selection functionals, and cooperative multi-threading. We conclude with thoughts about the future

work.
The implementation of Eff is freely available at http://www.eff-lang.org/.* Corresponding author.E-mail addresses: andrej@andrej.com (A. Bauer), matija@pretnar.info (M. Pretnar).

http://dx.doi.org/10.1016/j.jlamp.2014.02.0012352-2208/© 2014 Elsevier Inc. All rights reserved.

Journal of Logical and Algebraic Methods in Programming 84 (2015) 108–123

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming

www.elsevier.com/locate/jlamp

Programming with algebraic effects and handlers

Andrej Bauer, Matija Pretnar ∗

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

a r t i c l e i n f o a b s t r a c t

Article history:

Received 29 February 2012

Received in revised form 12 November 2013

Accepted 22 February 2014

Available online 20 March 2014

Eff is a programming language based on the algebraic approach to computational effects,

in which effects are viewed as algebraic operations and effect handlers as homomorphisms

from free algebras. Eff supports first-class effects and handlers through which we may eas-

ily define new computational effects, seamlessly combine existing ones, and handle them

in novel ways. We give a denotational semantics of Eff and discuss a prototype implemen-

tation based on it. Through examples we demonstrate how the standard effects are treated

in Eff, and how Eff supports programming techniques that use various forms of delimited

continuations, such as backtracking, breadth-first search, selection functionals, cooperative

multi-threading, and others. © 2014 Elsevier Inc. All rights reserved.

0. Introduction

Eff is a programming language based on the algebraic approach to effects, in which computational effects are modeled as

operations of a suitably chosen algebraic theory [12]. Common computational effects such as input, output, state, exceptions,

and nondeterminism, are of this kind. Continuations are not algebraic [4], but they turn out to be naturally supported by Eff

as well. Effect handlers are a related notion [14,19] which encompasses exception handlers, stream redirection, transactions,

backtracking, and many others. These are modeled as homomorphisms induced by the universal property of free algebras.

Each algebraic theory gives rise to a monad [1,11], although the operations cannot be reconstructed from it. Algebraic

theories have their own virtues, though. Effects are combined more easily than monads [5], and the interaction between

effects and handlers offers new ways of programming. An experiment in the design of a programming language based on

the algebraic approach therefore seems warranted.

Philip Wadler once opined [21] that monads as a programming concept would not have been discovered without their

category-theoretic counterparts, but once they were, programmers could live in blissful ignorance of their origin. Because

the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of programmers, trusting that

connoisseurs will recognize the connections with the underlying mathematical theory.

The paper is organized as follows. Section 1 describes the syntax of Eff, Section 2 informally introduces constructs specific

to Eff, Section 3 is devoted to type checking, in Section 4 we give a domain-theoretic semantics of Eff, and in Section 5 we

briefly discuss our prototype implementation. The examples in Section 6 demonstrate how effects and handlers can be

used to produce standard computational effects, such as exceptions, state, input and output, as well as their variations and

combinations. Further examples show how Eff ’s delimited control capabilities are used for nondeterministic and probabilistic

choice, backtracking, selection functionals, and cooperative multi-threading. We conclude with thoughts about the future

work.
The implementation of Eff is freely available at http://www.eff-lang.org/.

* Corresponding author.

E-mail addresses: andrej@andrej.com (A. Bauer), matija@pretnar.info (M. Pretnar).

http://dx.doi.org/10.1016/j.jlamp.2014.02.001

2352-2208/© 2014 Elsevier Inc. All rights reserved.

Moving from mathematics to programming gave extra flexibility

Plotkin & P.

Bauer & P.

Moving from mathematics to programming gave extra flexibility
� ` u :�

� ;Z ` returnu :F�

� ;Z ` h :F�
�, x :�;Z ` h

0 :�

� ;Z ` letx beh inh
0 :�

,

and the standard rules for conditionals, products, and functions.

For greater
generality,

handlers are parametric in two ways: their type con-

tains type variables, and they are dependent on parameters xp and zp, supplied

through the handling construct. A handler is given by a handling term for each

operation, dependent on its parameters x and arguments z, and is typed by

xp :�,x :�;zp :�, (zi : (↵i) ! �)ni=1
` hop :� (op:�;↵1, .

. . ,↵n 2 ⌃e↵)

` (xp :�;zp :�).{opx(z) 7! hop}op2⌃eff
: (�;�) ! � handler

.

When opx(z) 7! hop
is omitted, we assume that hop

= opx(xi : ↵i.zi(xi))i, so

that op is not handled.

4.1
Semantics

For each assignment of models [[X]] to type variables X, handler types � are

interpreted by models [[�]], given by

[[F�]] = F [[�]]

[[1]] = 1

[[�1 ⇥ �2]] = [[�1]] ⇥ [[�2]]
[[� ! �]] = [[�]][[�]] ,

where the model is given component-wise on M1 ⇥M2 and point-wise on M
A .

Then, we interpret contexts Z = z1 : (↵1) ! �1, .
. . , zn : (↵n) ! �n by

[[Z]] = U [[�1]]
[[↵1]] ⇥ · · · ⇥ U [[�n]][[↵n]] and handler terms � ;Z ` h : � by maps

[[h]] : [[�]] ⇥ [[Z]] ! U [[�]], defined inductively by

[[� ;Z ` zi(v) :�i]] = ev � hprU [[�i]]
[[↵i]]

, [[v]]i ,

[[� ;Z ` opv(xi.hi)i :�]] = op[[�]] � h[[v
]], d[[h1]], . . .

,
d[[hn]]i ,

[[� ;Z ` returnu :F�]] = ⌘[[�]] � [[u]] ,

[[� ;Z ` letx beh inh
0 :�]] = [[h0]]

† � hid� , idZ, [[h]]i ,

where bf : B ! C
A is the transpose of f : A⇥B ! C and f

† : A⇥UFB ! UM

is the lifting of f : A⇥ B ! UM , which is defined by U✏ � UFf � stA,B, where

stA,B : A ⇥ UFB ! UF (A ⇥ B) is the strength of the functor UF . The inter-

pretation
s of conditionals, products, and functions are defined as usual [15].

A handler (xp :�;zp :�).{opx(z) 7! hop}op2⌃eff
: (�;�) ! � handler is cor-

rect (with respect to E) if for all assignments of models [[X]] to type variables X,

and for all parameters ap 2 [[�]] and mp 2 [[�]], the family of maps

{[[hop]] � hap,p
r[[�]],

mp,p
r

Q
i
U [[�]][[↵i]]

i : [[�]] ⇥
Y

i

U [[�]][[↵i]] ! U [[�]]}op2⌃eff

defines a model of the e↵ect theory E on U [[�]].

7

Plotkin & P.

Bauer & P.

Moving from mathematics to programming gave extra flexibility
� ` u :�

� ;Z ` returnu :F�

� ;Z ` h :F�
�, x :�;Z ` h

0 :�

� ;Z ` letx beh inh
0 :�

,

and the standard rules for conditionals, products, and functions.

For greater
generality,

handlers are parametric in two ways: their type con-

tains type variables, and they are dependent on parameters xp and zp, supplied

through the handling construct. A handler is given by a handling term for each

operation, dependent on its parameters x and arguments z, and is typed by

xp :�,x :�;zp :�, (zi : (↵i) ! �)ni=1
` hop :� (op:�;↵1, .

. . ,↵n 2 ⌃e↵)

` (xp :�;zp :�).{opx(z) 7! hop}op2⌃eff
: (�;�) ! � handler

.

When opx(z) 7! hop
is omitted, we assume that hop

= opx(xi : ↵i.zi(xi))i, so

that op is not handled.

4.1
Semantics

For each assignment of models [[X]] to type variables X, handler types � are

interpreted by models [[�]], given by

[[F�]] = F [[�]]

[[1]] = 1

[[�1 ⇥ �2]] = [[�1]] ⇥ [[�2]]
[[� ! �]] = [[�]][[�]] ,

where the model is given component-wise on M1 ⇥M2 and point-wise on M
A .

Then, we interpret contexts Z = z1 : (↵1) ! �1, .
. . , zn : (↵n) ! �n by

[[Z]] = U [[�1]]
[[↵1]] ⇥ · · · ⇥ U [[�n]][[↵n]] and handler terms � ;Z ` h : � by maps

[[h]] : [[�]] ⇥ [[Z]] ! U [[�]], defined inductively by

[[� ;Z ` zi(v) :�i]] = ev � hprU [[�i]]
[[↵i]]

, [[v]]i ,

[[� ;Z ` opv(xi.hi)i :�]] = op[[�]] � h[[v
]], d[[h1]], . . .

,
d[[hn]]i ,

[[� ;Z ` returnu :F�]] = ⌘[[�]] � [[u]] ,

[[� ;Z ` letx beh inh
0 :�]] = [[h0]]

† � hid� , idZ, [[h]]i ,

where bf : B ! C
A is the transpose of f : A⇥B ! C and f

† : A⇥UFB ! UM

is the lifting of f : A⇥ B ! UM , which is defined by U✏ � UFf � stA,B, where

stA,B : A ⇥ UFB ! UF (A ⇥ B) is the strength of the functor UF . The inter-

pretation
s of conditionals, products, and functions are defined as usual [15].

A handler (xp :�;zp :�).{opx(z) 7! hop}op2⌃eff
: (�;�) ! � handler is cor-

rect (with respect to E) if for all assignments of models [[X]] to type variables X,

and for all parameters ap 2 [[�]] and mp 2 [[�]], the family of maps

{[[hop]] � hap,p
r[[�]],

mp,p
r

Q
i
U [[�]][[↵i]]

i : [[�]] ⇥
Y

i

U [[�]][[↵i]] ! U [[�]]}op2⌃eff

defines a model of the e↵ect theory E on U [[�]].

7

A. Bauer, M. Pretnar / Journal of Logical and Algebraic Methods in Programming 84 (2015) 108–123
109

1. Syntax

Eff is a statically typed language with parametric polymorphism and type inference. Its types include products, sums,

records, and recursive type definitions. To keep to the point, we focus on a core language with monomorphic types and

type checking. The concrete syntax follows that of OCaml [6], so we discuss it only in relation to the new constructs.

1.1. Types

Apart from the standard types, Eff has effect types E and handler types A ⇒ B:

A, B, C ::= int
∣∣ bool

∣∣ unit
∣∣ empty

∣∣

A × B
∣∣ A + B

∣∣ A → B
∣∣ E

∣∣ A ⇒ B,

(type)

E ::= effect (operation o
pi : Ai → Bi)i end.

(effect type)

In the rule for effect types and elsewhere below (· · ·)i indicates that · · · may be repeated a finite number of times. We in-

clude the empty type as we need it to describe exceptions, see Section 6.2. An effect type declares a collection of related

operation symbols, for example those for writing to and reading from a communication channel. We write op : A → B ∈ E

or just op ∈ E to indicate that the effect type E contains an operation op with parameters of type A and results of type B .

The handler type A ⇒ B should be understood as the type of handlers acting on computations of type A and yielding

computations of type B .

1.2. Expressions and computations

Eff distinguishes between expressions and computations, which are similar to values and producers of fine-grain call-

by-value [7]. The former are inert and free from computational effects, including divergence, while the latter may diverge

or cause computational effects. As discussed in Section 5, the concrete syntax of Eff hides the distinction and allows the

programmer to freely mix expressions and computations.

Beware that we use two kinds of vertical bars below: the tall
∣∣ separates grammatical alternatives, and the short |

separates cases in handlers and match statements. The expressions are

e ::= x
∣∣ n

∣∣ b
∣∣ true

∣∣ false
∣∣ ()

∣∣ (e1, e2)
∣∣

Left e
∣∣ Right e

∣∣ fun x : A %→ c
∣∣ e #op

∣∣ h,

(expression)

h ::= handler val x %→ cv |(ei #opi x k %→ ci)i |finally x %→ c f ,

(handler)

where x signifies a variable, n an integer constant, and b other built-in constants. The expressions (), (e1, e2), Left e,

Right e, and fun x : A %→ c are introduction forms for the unit, product, sum, and function types, respectively. Operations

e #op and handlers h are discussed in Section 2.

The computations are

c ::= val e
∣∣ let x = c1 in c2

∣∣ let rec f x = c1 in c2
∣∣

if e then c1 else c2
∣∣ match e with

∣∣ match e with (x, y) %→ c
∣∣

match e with Left x %→ c1 |Right y %→ c2
∣∣ e1 e2

∣∣

new E
∣∣ new E @ e with (operation o

pi x @ y %→ ci)i end
∣∣

with e handle c.

(computation)

An expression e is promoted to a computation with val e, but in the concrete syntax val is omitted, as there is no dis-

tinction between expressions and computations. The statement let x = c1 in c2 binds x in c2, and let rec f x = c1 in c2

defines a recursive function f in c2. The conditional statement and the variations of match are elimination forms for

booleans, the empty type, products, and sums, respectively. Instance creation and the handling construct are discussed in

Section 2.
Arithmetical expressions such as e1 +e2 count as computations because the arithmetical operators are defined as built-in

constants, so that e1 + e2 is parsed as a double application. This allows us to uniformly treat all operations, irrespective of

whether they are pure or effectful (division by zero).

2. Constructs specific to Eff

We explain the intuitive meaning of notions that are specific to Eff, namely instances, operations, handlers, and resources.

We allow ourselves some slack in distinguishing syntax from semantics, which is treated in detail in Section 4. It is helpful

to think of a terminating computation as evaluating either to a value or an operation applied to a parameter.

Plotkin & P.

Bauer & P.

Notion of models got absorbed in homomorphisms

Plotkin & P.

Bauer & P.

Notion of models got absorbed in homomorphisms

2.1 Instances and operations

The computation new E generates a fresh effect instan
ce of effect typeE. For exampl

e,

new ref generates a new reference, new channel a new communication channel,

etc. The extended form of new
creates an effect instance with

an associated resource,

which determines the default
behaviour of operations and i

s explained separately in

Section 2.3.
For each effect instance e of e

ffect type E and an operation symbol op ∈
E there

is an operation e # op, also kno
wn as a generic effect [12]. By

itself, an operation is a

value, and hence effect-free, bu
t an applied operation e # op e

′ is a computational effect

whose ramifications are determ
ined by enveloping handlers an

d the resource associated

with e.

2.2 Handlers

A handler

h = handler (ei # opi x k "→ ci)i | val x "→ cv | finally x "→ cf

may be applied to a computati
on c with the handling constru

ct

with h handle c,
(1)

which works as follows (we ig
nore the finally clause for t

he moment):

1. If c evaluates to val e, (1) evaluates to cv with x bo
und to e.

2. If the evaluation of c encou
nters an operation ei # opi e, (1

) evaluates to ci with

x bound to e and k bound to th
e continuation of ei # opi e, i.e

., whatever remains

to be computed after the opera
tion. The continuation is delim

ited by (1) and is

handled by h as well.

The finally clause can be th
ought of as an outer wrapper

which performs an addi-

tional transformation, so that (
1) is equivalent to

let x = (with h′ handle c) in cf

where h′ is like h without the
finally clause. Such a wrap

per is useful because we

often perform the same transfo
rmation every time a given ha

ndler is applied. For ex-

ample, the handler for state ha
ndles a computation by transfo

rming it to a function ac-

cepting the state, and finally
applies the function to the initi

al state, see Section 6.3.

If the evaluation of c encount
ers an operation e # op e′ that is not listed in h, the

control propagates to outer ha
ndling constructs, and eventua

lly to the toplevel, where

the behaviour is determined by
the resource associated with e.

2.3 Resources

The construct

new E @ e with (operation opi x@ y "→ ci)i end

4

Plotkin & P.

Bauer & P.

Notion of models got absorbed in homomorphisms

2.1 Instances and operations

The computation new E generates a fresh effect instan
ce of effect typeE. For exampl

e,

new ref generates a new reference, new channel a new communication channel,

etc. The extended form of new
creates an effect instance with

an associated resource,

which determines the default
behaviour of operations and i

s explained separately in

Section 2.3.
For each effect instance e of e

ffect type E and an operation symbol op ∈
E there

is an operation e # op, also kno
wn as a generic effect [12]. By

itself, an operation is a

value, and hence effect-free, bu
t an applied operation e # op e

′ is a computational effect

whose ramifications are determ
ined by enveloping handlers an

d the resource associated

with e.

2.2 Handlers

A handler

h = handler (ei # opi x k "→ ci)i | val x "→ cv | finally x "→ cf

may be applied to a computati
on c with the handling constru

ct

with h handle c,
(1)

which works as follows (we ig
nore the finally clause for t

he moment):

1. If c evaluates to val e, (1) evaluates to cv with x bo
und to e.

2. If the evaluation of c encou
nters an operation ei # opi e, (1

) evaluates to ci with

x bound to e and k bound to th
e continuation of ei # opi e, i.e

., whatever remains

to be computed after the opera
tion. The continuation is delim

ited by (1) and is

handled by h as well.

The finally clause can be th
ought of as an outer wrapper

which performs an addi-

tional transformation, so that (
1) is equivalent to

let x = (with h′ handle c) in cf

where h′ is like h without the
finally clause. Such a wrap

per is useful because we

often perform the same transfo
rmation every time a given ha

ndler is applied. For ex-

ample, the handler for state ha
ndles a computation by transfo

rming it to a function ac-

cepting the state, and finally
applies the function to the initi

al state, see Section 6.3.

If the evaluation of c encount
ers an operation e # op e′ that is not listed in h, the

control propagates to outer ha
ndling constructs, and eventua

lly to the toplevel, where

the behaviour is determined by
the resource associated with e.

2.3 Resources

The construct

new E @ e with (operation opi x@ y "→ ci)i end

4

Then, � ` try twithH(u; t) asx in t
0 is interpreted by

g[[t0]] � hid[[�]], [[t]]i :
[[�]] ! U [[�[⌧/X]withH(u; t)]] = U [[�[⌧/X]]] .

6 Examples

6.1
Exception

s

The standard uniform exception handler Hexc : (exc ! X) ! X handler is

(z :exc ! X).{raisee() 7! ze} .

Benton and Kennedy’s construct try x (t in t
0 unless {e1) t1 | · · · | en) tn}

can then be written as try twith texc asx in t
0 for a suitable term texc :exc ! ⌧ .

Benton and Kennedy noted a few issues about the syntax of their construct

when used for programming [13]. It is not obvious that t is handled whereas t
0

is not, especially when t
0 is large and the handler is obscured. An alternative

they propose is try x (t unless {e1) t1 | . . . | en) tn}i in t
0 , but then it is not

obvious that x is bound in t
0 , but not in the handler. The syntax of our con-

struct try twithH(u; t) asx in t
0 addresses those issues and clarifies the order of

evaluation: after t is handled with H, its results are bound to x and used in t
0 .

6.2
Strea

m redirect
ion

Shell processes in Unix-like operating systems communicate with the user us-

ing input and output streams, usually connected to a keyboard and a terminal

window. However, such streams can be rerouted to other processes and simple

commands can be combined into more powerful ones.

One case is the redirection
proc > outfil

e of the output stream of a pro-

cess proc
to a file outfi

le, usually used to store the output for a future analysis.

An alternative is the redirection proc > /dev/n
ull to the null device, which ef-

fectively
discards the standard output stream.

Another case is the pipe proc1
| proc2, where the output of proc1

is fed to

the input of proc2
. For example, to get a way (not necessarily

the best one) of

routinely confirming a series of actions, for example deleting a large number of

files, we write yes | proc, where the command yes outputs an infinite stream

made of a predetermined character (default one being y).

We represent interactive
input/output by: a base signature, consisting of

a base type char of characters
and constants a, b, . . .

of type char, together

with the obvious interpretation; an e↵ect signature, consisting of operation sym-

bols out : char; 1 and in : char, with the empty e↵ect theory. Then, if t is a

computation, we can express yes
| t > /dev/n

ull by handle twithHred, where

Hred
:X handler is given by {outc(z) 7! z, in(z) 7! z(y)}.

9

Plotkin & P.

Bauer & P.

Notion of models got absorbed in homomorphisms

2.1 Instances and operations

The computation new E generates a fresh effect instan
ce of effect typeE. For exampl

e,

new ref generates a new reference, new channel a new communication channel,

etc. The extended form of new
creates an effect instance with

an associated resource,

which determines the default
behaviour of operations and i

s explained separately in

Section 2.3.
For each effect instance e of e

ffect type E and an operation symbol op ∈
E there

is an operation e # op, also kno
wn as a generic effect [12]. By

itself, an operation is a

value, and hence effect-free, bu
t an applied operation e # op e

′ is a computational effect

whose ramifications are determ
ined by enveloping handlers an

d the resource associated

with e.

2.2 Handlers

A handler

h = handler (ei # opi x k "→ ci)i | val x "→ cv | finally x "→ cf

may be applied to a computati
on c with the handling constru

ct

with h handle c,
(1)

which works as follows (we ig
nore the finally clause for t

he moment):

1. If c evaluates to val e, (1) evaluates to cv with x bo
und to e.

2. If the evaluation of c encou
nters an operation ei # opi e, (1

) evaluates to ci with

x bound to e and k bound to th
e continuation of ei # opi e, i.e

., whatever remains

to be computed after the opera
tion. The continuation is delim

ited by (1) and is

handled by h as well.

The finally clause can be th
ought of as an outer wrapper

which performs an addi-

tional transformation, so that (
1) is equivalent to

let x = (with h′ handle c) in cf

where h′ is like h without the
finally clause. Such a wrap

per is useful because we

often perform the same transfo
rmation every time a given ha

ndler is applied. For ex-

ample, the handler for state ha
ndles a computation by transfo

rming it to a function ac-

cepting the state, and finally
applies the function to the initi

al state, see Section 6.3.

If the evaluation of c encount
ers an operation e # op e′ that is not listed in h, the

control propagates to outer ha
ndling constructs, and eventua

lly to the toplevel, where

the behaviour is determined by
the resource associated with e.

2.3 Resources

The construct

new E @ e with (operation opi x@ y "→ ci)i end

4

Then, � ` try twithH(u; t) asx in t
0 is interpreted by

g[[t0]] � hid[[�]], [[t]]i :
[[�]] ! U [[�[⌧/X]withH(u; t)]] = U [[�[⌧/X]]] .

6 Examples

6.1
Exception

s

The standard uniform exception handler Hexc : (exc ! X) ! X handler is

(z :exc ! X).{raisee() 7! ze} .

Benton and Kennedy’s construct try x (t in t
0 unless {e1) t1 | · · · | en) tn}

can then be written as try twith texc asx in t
0 for a suitable term texc :exc ! ⌧ .

Benton and Kennedy noted a few issues about the syntax of their construct

when used for programming [13]. It is not obvious that t is handled whereas t
0

is not, especially when t
0 is large and the handler is obscured. An alternative

they propose is try x (t unless {e1) t1 | . . . | en) tn}i in t
0 , but then it is not

obvious that x is bound in t
0 , but not in the handler. The syntax of our con-

struct try twithH(u; t) asx in t
0 addresses those issues and clarifies the order of

evaluation: after t is handled with H, its results are bound to x and used in t
0 .

6.2
Strea

m redirect
ion

Shell processes in Unix-like operating systems communicate with the user us-

ing input and output streams, usually connected to a keyboard and a terminal

window. However, such streams can be rerouted to other processes and simple

commands can be combined into more powerful ones.

One case is the redirection
proc > outfil

e of the output stream of a pro-

cess proc
to a file outfi

le, usually used to store the output for a future analysis.

An alternative is the redirection proc > /dev/n
ull to the null device, which ef-

fectively
discards the standard output stream.

Another case is the pipe proc1
| proc2, where the output of proc1

is fed to

the input of proc2
. For example, to get a way (not necessarily

the best one) of

routinely confirming a series of actions, for example deleting a large number of

files, we write yes | proc, where the command yes outputs an infinite stream

made of a predetermined character (default one being y).

We represent interactive
input/output by: a base signature, consisting of

a base type char of characters
and constants a, b, . . .

of type char, together

with the obvious interpretation; an e↵ect signature, consisting of operation sym-

bols out : char; 1 and in : char, with the empty e↵ect theory. Then, if t is a

computation, we can express yes
| t > /dev/n

ull by handle twithHred, where

Hred
:X handler is given by {outc(z) 7! z, in(z) 7! z(y)}.

9

Plotkin & P.

Bauer & P.

Equations disappeared

Plotkin & P.

Bauer & P.

Equations disappeared

algebraic operation; such families are characterised by a certain naturality con-

dition [5].
Although this gives a way of constructing, combining [10], and reasoning [11]

about algebraic e↵ects, it does not account for their handling, as exception han-

dlers, a well-known programming concept, fail to be algebraic operations [5].

Conceptually, algebraic operations and e↵ect handlers are dual: the former could

be called e↵ect constructors as they give rise to the e↵ects; the latter could be

called e↵ect deconstructors as they depend on the e↵ects already created. Filin-

ski’s reflection and reification [12] are closely related general concepts.

This paper introduces a handling construction for arbitrary algebraic e↵ects.

The central new idea is that, semantically, handling a computation amounts

to composing it with a unique homomorphism guaranteed by universality. The

domain of this homomorphism is a free model of the algebraic theory of the

e↵ects at hand; its range is a programmer-defined model of the algebraic theory;

and it extends a programmer-defined map on values. The principal example

is exception handling, particularly the exception-handling construct of Benton

and Kennedy [13], which our new construct generalises. It also includes many

other, previously unrelated, concepts. For example, stream redirection of shell

processes, renaming and hiding in CCS [14], timeout, and rollback can all be

seen as instances of such handlers.

In Section 2 we explain the idea of using homomorphisms for the seman-

tics of handlers via an informal discussion of exception handlers. In the follow-

ing Sections 3, 4 and 5 we develop a formal calculus in the call-by-push-value

framework [15, 11]. Section 3, describes (base) values and the algebraic theory

of e↵ects. A natural need for two languages arises: one to describe handlers,

given in Section 4, and one where they are used to handle computations, given

in Section 5. The second parts of these sections give the relevant denotational

semantics; readers may wish to omit these and continue with Section 6, where

we give examples.

We outline a version of a logic for algebraic e↵ects [11] with handlers in Sec-

tion 7. In Section 8 we sketch the inclusion of recursion: until then we work only

with sets and functions, but everything adapts straightforwardly to !-cpos (par-

tial orders with sups of increasing sequences) and continuous functions (mono-

tone functions preserving sups of increasing sequences). Finally, we discuss some

open questions and possible future work in Section 9.

2 Exception handlers

We start our study with exception handlers both because they are an established

concept [13, 16] and also because exceptions provide the simplest example of

algebraic e↵ects. To focus on the exposition of ideas, we write this section in a

rather informal style, mixing syntax and semantics.

Taking a set of exceptions E, the computations that return values from a

set X are represented by elements, �, of TX =def X+E; the unit of the monad is

⌘ = x 7! inl(x). Algebraically, one may take a nullary operation, i.e., a constant,

2

Plotkin & P.

Bauer & P.

Equations disappeared

algebraic operation; such families are characterised by a certain naturality con-

dition [5].
Although this gives a way of constructing, combining [10], and reasoning [11]

about algebraic e↵ects, it does not account for their handling, as exception han-

dlers, a well-known programming concept, fail to be algebraic operations [5].

Conceptually, algebraic operations and e↵ect handlers are dual: the former could

be called e↵ect constructors as they give rise to the e↵ects; the latter could be

called e↵ect deconstructors as they depend on the e↵ects already created. Filin-

ski’s reflection and reification [12] are closely related general concepts.

This paper introduces a handling construction for arbitrary algebraic e↵ects.

The central new idea is that, semantically, handling a computation amounts

to composing it with a unique homomorphism guaranteed by universality. The

domain of this homomorphism is a free model of the algebraic theory of the

e↵ects at hand; its range is a programmer-defined model of the algebraic theory;

and it extends a programmer-defined map on values. The principal example

is exception handling, particularly the exception-handling construct of Benton

and Kennedy [13], which our new construct generalises. It also includes many

other, previously unrelated, concepts. For example, stream redirection of shell

processes, renaming and hiding in CCS [14], timeout, and rollback can all be

seen as instances of such handlers.

In Section 2 we explain the idea of using homomorphisms for the seman-

tics of handlers via an informal discussion of exception handlers. In the follow-

ing Sections 3, 4 and 5 we develop a formal calculus in the call-by-push-value

framework [15, 11]. Section 3, describes (base) values and the algebraic theory

of e↵ects. A natural need for two languages arises: one to describe handlers,

given in Section 4, and one where they are used to handle computations, given

in Section 5. The second parts of these sections give the relevant denotational

semantics; readers may wish to omit these and continue with Section 6, where

we give examples.

We outline a version of a logic for algebraic e↵ects [11] with handlers in Sec-

tion 7. In Section 8 we sketch the inclusion of recursion: until then we work only

with sets and functions, but everything adapts straightforwardly to !-cpos (par-

tial orders with sups of increasing sequences) and continuous functions (mono-

tone functions preserving sups of increasing sequences). Finally, we discuss some

open questions and possible future work in Section 9.

2 Exception handlers

We start our study with exception handlers both because they are an established

concept [13, 16] and also because exceptions provide the simplest example of

algebraic e↵ects. To focus on the exposition of ideas, we write this section in a

rather informal style, mixing syntax and semantics.

Taking a set of exceptions E, the computations that return values from a

set X are represented by elements, �, of TX =def X+E; the unit of the monad is

⌘ = x 7! inl(x). Algebraically, one may take a nullary operation, i.e., a constant,

2

Plotkin & P.

Bauer & P.

ensuring correctness

programmer

writes and uses
handlers

language designer

writes handlers

programmer
uses them

Equations disappeared

algebraic operation; such families are characterised by a certain naturality con-

dition [5].
Although this gives a way of constructing, combining [10], and reasoning [11]

about algebraic e↵ects, it does not account for their handling, as exception han-

dlers, a well-known programming concept, fail to be algebraic operations [5].

Conceptually, algebraic operations and e↵ect handlers are dual: the former could

be called e↵ect constructors as they give rise to the e↵ects; the latter could be

called e↵ect deconstructors as they depend on the e↵ects already created. Filin-

ski’s reflection and reification [12] are closely related general concepts.

This paper introduces a handling construction for arbitrary algebraic e↵ects.

The central new idea is that, semantically, handling a computation amounts

to composing it with a unique homomorphism guaranteed by universality. The

domain of this homomorphism is a free model of the algebraic theory of the

e↵ects at hand; its range is a programmer-defined model of the algebraic theory;

and it extends a programmer-defined map on values. The principal example

is exception handling, particularly the exception-handling construct of Benton

and Kennedy [13], which our new construct generalises. It also includes many

other, previously unrelated, concepts. For example, stream redirection of shell

processes, renaming and hiding in CCS [14], timeout, and rollback can all be

seen as instances of such handlers.

In Section 2 we explain the idea of using homomorphisms for the seman-

tics of handlers via an informal discussion of exception handlers. In the follow-

ing Sections 3, 4 and 5 we develop a formal calculus in the call-by-push-value

framework [15, 11]. Section 3, describes (base) values and the algebraic theory

of e↵ects. A natural need for two languages arises: one to describe handlers,

given in Section 4, and one where they are used to handle computations, given

in Section 5. The second parts of these sections give the relevant denotational

semantics; readers may wish to omit these and continue with Section 6, where

we give examples.

We outline a version of a logic for algebraic e↵ects [11] with handlers in Sec-

tion 7. In Section 8 we sketch the inclusion of recursion: until then we work only

with sets and functions, but everything adapts straightforwardly to !-cpos (par-

tial orders with sups of increasing sequences) and continuous functions (mono-

tone functions preserving sups of increasing sequences). Finally, we discuss some

open questions and possible future work in Section 9.

2 Exception handlers

We start our study with exception handlers both because they are an established

concept [13, 16] and also because exceptions provide the simplest example of

algebraic e↵ects. To focus on the exposition of ideas, we write this section in a

rather informal style, mixing syntax and semantics.

Taking a set of exceptions E, the computations that return values from a

set X are represented by elements, �, of TX =def X+E; the unit of the monad is

⌘ = x 7! inl(x). Algebraically, one may take a nullary operation, i.e., a constant,

2

Plotkin & P.

Bauer & P.

ensuring correctness

programmer

writes and uses
handlers

language designer

writes handlers

programmer
uses them

maximum result

operations
or : 2

handlers
Hmax = { or(x1, x2) → max(x1, x2) }

try or(or(3, 2), 5) with Hmax = 5

Hsum = { or(x1, x2) → x1 + x2 }

try or(3, 3) with Hsum = 6

try 3 with Hsum = 3

Equations disappeared

algebraic operation; such families are characterised by a certain naturality con-

dition [5].
Although this gives a way of constructing, combining [10], and reasoning [11]

about algebraic e↵ects, it does not account for their handling, as exception han-

dlers, a well-known programming concept, fail to be algebraic operations [5].

Conceptually, algebraic operations and e↵ect handlers are dual: the former could

be called e↵ect constructors as they give rise to the e↵ects; the latter could be

called e↵ect deconstructors as they depend on the e↵ects already created. Filin-

ski’s reflection and reification [12] are closely related general concepts.

This paper introduces a handling construction for arbitrary algebraic e↵ects.

The central new idea is that, semantically, handling a computation amounts

to composing it with a unique homomorphism guaranteed by universality. The

domain of this homomorphism is a free model of the algebraic theory of the

e↵ects at hand; its range is a programmer-defined model of the algebraic theory;

and it extends a programmer-defined map on values. The principal example

is exception handling, particularly the exception-handling construct of Benton

and Kennedy [13], which our new construct generalises. It also includes many

other, previously unrelated, concepts. For example, stream redirection of shell

processes, renaming and hiding in CCS [14], timeout, and rollback can all be

seen as instances of such handlers.

In Section 2 we explain the idea of using homomorphisms for the seman-

tics of handlers via an informal discussion of exception handlers. In the follow-

ing Sections 3, 4 and 5 we develop a formal calculus in the call-by-push-value

framework [15, 11]. Section 3, describes (base) values and the algebraic theory

of e↵ects. A natural need for two languages arises: one to describe handlers,

given in Section 4, and one where they are used to handle computations, given

in Section 5. The second parts of these sections give the relevant denotational

semantics; readers may wish to omit these and continue with Section 6, where

we give examples.

We outline a version of a logic for algebraic e↵ects [11] with handlers in Sec-

tion 7. In Section 8 we sketch the inclusion of recursion: until then we work only

with sets and functions, but everything adapts straightforwardly to !-cpos (par-

tial orders with sups of increasing sequences) and continuous functions (mono-

tone functions preserving sups of increasing sequences). Finally, we discuss some

open questions and possible future work in Section 9.

2 Exception handlers

We start our study with exception handlers both because they are an established

concept [13, 16] and also because exceptions provide the simplest example of

algebraic e↵ects. To focus on the exposition of ideas, we write this section in a

rather informal style, mixing syntax and semantics.

Taking a set of exceptions E, the computations that return values from a

set X are represented by elements, �, of TX =def X+E; the unit of the monad is

⌘ = x 7! inl(x). Algebraically, one may take a nullary operation, i.e., a constant,

2

Plotkin & P.

Bauer & P.

ensuring correctness

programmer

writes and uses
handlers

language designer

writes handlers

programmer
uses them

maximum result

operations
or : 2

handlers
Hmax = { or(x1, x2) → max(x1, x2) }

try or(or(3, 2), 5) with Hmax = 5

Hsum = { or(x1, x2) → x1 + x2 }

try or(3, 3) with Hsum = 6

try 3 with Hsum = 3

Shallow handlers were visible only when looking operationally

Handlers in Action
Ohad Kammar

University of Cambridgeohad.kammar@cl.cam.ac.uk

Sam Lindley
University of StrathclydeSam.Lindley@ed.ac.uk

Nicolas Oury
nicolas.oury@gmail.com

Abstract
Plotkin and Pretnar’s handlers for algebraic effects occupy a sweet
spot in the design space of abstractions for effectful computation.
By separating effect signatures from their implementation, alge-
braic effects provide a high degree of modularity, allowing pro-
grammers to express effectful programs independently of the con-
crete interpretation of their effects. A handler is an interpretation
of the effects of an algebraic computation. The handler abstraction
adapts well to multiple settings: pure or impure, strict or lazy, static
types or dynamic types.This is a position paper whose main aim is to popularise the
handler abstraction. We give a gentle introduction to its use, a col-
lection of illustrative examples, and a straightforward operational
semantics. We describe our Haskell implementation of handlers
in detail, outline the ideas behind our OCaml, SML, and Racket
implementations, and present experimental results comparing han-
dlers with existing code.
Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.3.1 [Formal Definitions and Theory];
D.3.2 [Language Classifications]: Applicative (functional) lan-
guages; D.3.3 [Language Constructs and Features]; F.3.2 [Se-
mantics of Programming Languages]: Operational semanticsKeywords algebraic effects; effect handlers; effect typing; mon-

ads; continuations; Haskell; modularity
1. Introduction
Monads have proven remarkably successful as a tool for abstrac-
tion over effectful computations [4, 30, 46]. However, monads as a
programming language primitive violate the fundamental encapsu-
lation principle: program to an interface, not to an implementation.

Modular programs are constructed using abstract interfaces as
building blocks. This is modular abstraction. To give meaning to
an abstract interface, we instantiate it with a concrete implemen-
tation. Given a composite interface, each sub-interface can be in-
dependently instantiated with different concrete implementations.
This is modular instantiation.The monadic approach to functional programming takes a con-
crete implementation rather than an abstract interface as primitive.
For instance, in Haskell we might define a state monad:

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.http://dx.doi.org/10.1145/2500365.2500590

newtype State s a = State {runState :: s ! (a, s)}
instance Monad (State s) wherereturn x = State (�s ! (x , s))m >>= f = State (�s ! let (x , s 0) = runState m s inrunState (f x) s 0)This definition says nothing about the intended use of State s a

as the type of computations that read and write state. Worse, it
breaks abstraction as consumers of state are exposed to its concrete
implementation as a function of type s ! (a, s). We can of
course define the natural get and put operations on state, but their
implementations are fixed.Jones [18] advocates modular abstraction for monads in Haskell
using type classes. For instance, we can define the following inter-
face to abstract state computation1:

class Monad m) MonadState s m | m ! s where
get :: m s
put :: s ! m ()

The MonadState interface can be smoothly combined with other
interfaces, taking advantage of Haskell’s type class mechanism to
represent type-level sets of effects.Monad transformers [25] provide a form of modular instantia-
tion for abstract monadic computations. For instance, state can be
handled in the presence of other effects by incorporating a state
monad transformer within a monad transformer stack.

A fundamental problem with monad transformer stacks is that
once a particular abstract effect is instantiated, the order of effects
in the stack becomes concrete, and it becomes necessary to explic-
itly lift operations through the stack. Taming the monad transformer
stack is an active research area [16, 17, 38, 42].Instead of the top-down monad transformer approach, we take
a bottom-up approach, simply adding the required features as lan-
guage primitives. We want modular abstraction, so we add abstract
effect interfaces, in fact abstract operations, as a language prim-
itive. Abstract operations compose, yielding modular abstraction.
We also want modular instantiation, so we add effect handlers as
a language primitive for instantiating an abstract operation with a
concrete implementation. A handler operates on a specified subset
of the abstract operations performed by an abstract computation,
leaving the remainder abstract, and yielding modular instantiation.

By directly adding the features we require, we obtain modular
abstraction and modular instantiation while avoiding many of the
pitfalls of monad transformers.Our first inspiration is the algebraic theory of computational
effects. Introduced by Plotkin and Power [33–35], it complements
Moggi’s monadic account of effects by incorporating abstract effect
interfaces as primitive. Our second inspiration is the elimination
construct for algebraic effects, effect handlers [36]. In Plotkin and
Power’s setting, one defines algebraic effects with respect to an
equational theory. As with other handler implementations [2, 6, 29],1 From the Monad Transformer Library [12].

Shallow handlers were visible only when looking operationally

Handlers in Action
Ohad Kammar

University of Cambridgeohad.kammar@cl.cam.ac.uk

Sam Lindley
University of StrathclydeSam.Lindley@ed.ac.uk

Nicolas Oury
nicolas.oury@gmail.com

Abstract
Plotkin and Pretnar’s handlers for algebraic effects occupy a sweet
spot in the design space of abstractions for effectful computation.
By separating effect signatures from their implementation, alge-
braic effects provide a high degree of modularity, allowing pro-
grammers to express effectful programs independently of the con-
crete interpretation of their effects. A handler is an interpretation
of the effects of an algebraic computation. The handler abstraction
adapts well to multiple settings: pure or impure, strict or lazy, static
types or dynamic types.This is a position paper whose main aim is to popularise the
handler abstraction. We give a gentle introduction to its use, a col-
lection of illustrative examples, and a straightforward operational
semantics. We describe our Haskell implementation of handlers
in detail, outline the ideas behind our OCaml, SML, and Racket
implementations, and present experimental results comparing han-
dlers with existing code.
Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.3.1 [Formal Definitions and Theory];
D.3.2 [Language Classifications]: Applicative (functional) lan-
guages; D.3.3 [Language Constructs and Features]; F.3.2 [Se-
mantics of Programming Languages]: Operational semanticsKeywords algebraic effects; effect handlers; effect typing; mon-

ads; continuations; Haskell; modularity
1. Introduction
Monads have proven remarkably successful as a tool for abstrac-
tion over effectful computations [4, 30, 46]. However, monads as a
programming language primitive violate the fundamental encapsu-
lation principle: program to an interface, not to an implementation.

Modular programs are constructed using abstract interfaces as
building blocks. This is modular abstraction. To give meaning to
an abstract interface, we instantiate it with a concrete implemen-
tation. Given a composite interface, each sub-interface can be in-
dependently instantiated with different concrete implementations.
This is modular instantiation.The monadic approach to functional programming takes a con-
crete implementation rather than an abstract interface as primitive.
For instance, in Haskell we might define a state monad:

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.http://dx.doi.org/10.1145/2500365.2500590

newtype State s a = State {runState :: s ! (a, s)}
instance Monad (State s) wherereturn x = State (�s ! (x , s))m >>= f = State (�s ! let (x , s 0) = runState m s inrunState (f x) s 0)This definition says nothing about the intended use of State s a

as the type of computations that read and write state. Worse, it
breaks abstraction as consumers of state are exposed to its concrete
implementation as a function of type s ! (a, s). We can of
course define the natural get and put operations on state, but their
implementations are fixed.Jones [18] advocates modular abstraction for monads in Haskell
using type classes. For instance, we can define the following inter-
face to abstract state computation1:

class Monad m) MonadState s m | m ! s where
get :: m s
put :: s ! m ()

The MonadState interface can be smoothly combined with other
interfaces, taking advantage of Haskell’s type class mechanism to
represent type-level sets of effects.Monad transformers [25] provide a form of modular instantia-
tion for abstract monadic computations. For instance, state can be
handled in the presence of other effects by incorporating a state
monad transformer within a monad transformer stack.

A fundamental problem with monad transformer stacks is that
once a particular abstract effect is instantiated, the order of effects
in the stack becomes concrete, and it becomes necessary to explic-
itly lift operations through the stack. Taming the monad transformer
stack is an active research area [16, 17, 38, 42].Instead of the top-down monad transformer approach, we take
a bottom-up approach, simply adding the required features as lan-
guage primitives. We want modular abstraction, so we add abstract
effect interfaces, in fact abstract operations, as a language prim-
itive. Abstract operations compose, yielding modular abstraction.
We also want modular instantiation, so we add effect handlers as
a language primitive for instantiating an abstract operation with a
concrete implementation. A handler operates on a specified subset
of the abstract operations performed by an abstract computation,
leaving the remainder abstract, and yielding modular instantiation.

By directly adding the features we require, we obtain modular
abstraction and modular instantiation while avoiding many of the
pitfalls of monad transformers.Our first inspiration is the algebraic theory of computational
effects. Introduced by Plotkin and Power [33–35], it complements
Moggi’s monadic account of effects by incorporating abstract effect
interfaces as primitive. Our second inspiration is the elimination
construct for algebraic effects, effect handlers [36]. In Plotkin and
Power’s setting, one defines algebraic effects with respect to an
equational theory. As with other handler implementations [2, 6, 29],1 From the Monad Transformer Library [12].

wcString :: String ! IO ()

wcString s =

let (c,w , l) = handlePure (stringReader s wc) in

putStrLn $ (show l) ++ " "++ (show w) ++ " "++ (show c)

Here is a version of wc that uses standard input:

wcStdin :: IO ()

wcStdin = do

(c,w , l) handleIO (stdinReader wc)

putStrLn $ (show l) ++ " "++ (show w) ++ " "++ (show c)

In practice, one might define other handlers in order to support file

input, network input, or different forms of buffering.

2.5 Tail

The tail program takes an argument n and prints the last n lines of

a text file. In order to implement the functionality of tail , we make

use of readLine as well as two additional abstract operations: the

first to record a line, and the second to print all recorded lines.

[operation | SaveLine :: String ! () |]

[operation | PrintAll :: () |]

With these two operations, implementing an abstract tail computa-

tion tailComp is straightforward.

tailComp ::

([handles | h {ReadChar } |], [handles | h {Finished } |],

[handles | h {SaveLine } |], [handles | h {PrintAll } |])

) Comp h ()

tailComp =

do s readLine; saveLine s

b finished ; if b then printAll else tailComp

We now just need to handle the SaveLine and ReadLine opera-

tions. A naive handler might store all saved lines in memory, and

print the last n as required. In practice, a more efficient implemen-

tation might store only the last n lines, using a circular array, say.

2.6 Pipes and Shallow Handlers

The behaviour of handlers we have described thus far is such that

the continuation of an operation is handled with the current handler

(though the parameters passed to the continuation may differ from

the current parameters).
Another possible behaviour is for the continuation to return an

unhandled computation, which must then be handled explicitly. We

call such handlers shallow handlers because each handler only han-

dles one step of a computation, in contrast to Plotkin and Pretnar’s

deep handlers. Shallow handlers are to deep handlers as case anal-

ysis is to a fold on an algebraic data type.

Shallow handlers sometimes lead to slightly longer code. For

example, the EvalState handler from Section 2.1 becomes:

[shallowHandler |
EvalStateShallow s a :: s ! a

handles {Get s,Put s } where

Return x s ! x

Get k s ! evalStateShallow (k s) s

Put s k ! evalStateShallow (k ()) s |]

The need to call the handler recursively in most clauses is charac-

teristic of the style of program one writes with shallow handlers.

In some situations, it is helpful to have access to the unhandled

result of the continuation. Consider pipes as exemplified by Gon-

zalez’s pipes library [14]. A pipe is a data structure used to rep-

resent composable producers and consumers of data. A consumer

can await data and a producer can yield data. A pipe is both a

consumer and a producer. It is straightforward to provide such an

abstraction with the following operations5:

5 These operations have exactly the same signatures as Get and Put , but

their intended interpretation is different. For instance, yield x ; yield y is

in no way equivalent to yield y .

[operation | Await s :: s |]

[operation | Yield s :: s ! () |]

To define a plumbing operator that combines a compatible con-

sumer and producer we write two handlers: one handles the down-

stream consumer and keeps a suspended producer to resume when

needed, the other handles the upstream producer and keeps a sus-

pended consumer. These two handlers are straightforward to write

using shallow handlers:

[shallowHandler |
forward h.Down s a :: Comp (Up h a) a ! a

handles {Await s } where

Return x ! return x

Await k prod ! up k prod |]

[shallowHandler |
forward h.Up s a :: (s ! Comp (Down h a) a)! a

handles {Yield s } where

Return x ! return x

Yield s k cons ! down (k ()) (cons s) |]

However, transforming these handlers into deep handlers re-

quires some ingenuity. Indeed, we need to work with continuations

that are fully handled and we cannot keep the simple mutually re-

cursive structure of the two handlers. Instead, we introduce two

mutually recursive type definitions

data Prod s r = Prod (()! Cons s r ! r)

data Cons s r = Cons (s ! Prod s r ! r)

which we use to encode the suspended partner of each computation

[handler |
forward h.Down s a :: Prod s (Comp h a)! a

handles {Await s } where

Return x ! return x

Await k (Prod prod) ! prod () (Cons k) |]

[handler |
forward h.Up s a :: Cons s (Comp h a)! a

handles {Yield s } where

Return x ! return x

Yield s k (Cons cons)! cons s (Prod k) |]

resulting in a more complex program. We believe both deep and

shallow handlers are useful. For clarity of presentation, we focus on

deep handlers in the rest of this paper. In Section 3.4 and Section 4.2

we outline how shallow handlers differ from the main presentation.

2.7 Other Perspectives

In this paper we primarily treat handlers as a flexible tool for

interpreting abstract effectful computations. Before we proceed

with the rest of the paper we highlight some alternative perspectives

on what handlers are.

Generalised exception handlers. Benton and Kennedy [3] intro-

duced the idea of adding a return continuation to exception han-

dlers. Their return continuation corresponds exactly to the return

clause of an effect handler. Effect handler operation clauses gener-

alise exception handler clauses by adding a continuation argument,

providing support for arbitrary effects. An operation clause that ig-

nores its continuation argument behaves like a standard exception

handler clause.

Taming delimited continuations. A handler invocation delimits

the start of a continuation. Each operation clause captures the con-

tinuation of the computation currently being handled, that is, the

continuation up to the invocation point of the handler. Effect han-

dlers modularise delimited continuations by capturing particular

patterns of use. As Andrej Bauer, the co-creator of the Eff [2] lan-

Shallow handlers were visible only when looking operationally

Handlers in Action
Ohad Kammar

University of Cambridgeohad.kammar@cl.cam.ac.uk

Sam Lindley
University of StrathclydeSam.Lindley@ed.ac.uk

Nicolas Oury
nicolas.oury@gmail.com

Abstract
Plotkin and Pretnar’s handlers for algebraic effects occupy a sweet
spot in the design space of abstractions for effectful computation.
By separating effect signatures from their implementation, alge-
braic effects provide a high degree of modularity, allowing pro-
grammers to express effectful programs independently of the con-
crete interpretation of their effects. A handler is an interpretation
of the effects of an algebraic computation. The handler abstraction
adapts well to multiple settings: pure or impure, strict or lazy, static
types or dynamic types.This is a position paper whose main aim is to popularise the
handler abstraction. We give a gentle introduction to its use, a col-
lection of illustrative examples, and a straightforward operational
semantics. We describe our Haskell implementation of handlers
in detail, outline the ideas behind our OCaml, SML, and Racket
implementations, and present experimental results comparing han-
dlers with existing code.
Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.3.1 [Formal Definitions and Theory];
D.3.2 [Language Classifications]: Applicative (functional) lan-
guages; D.3.3 [Language Constructs and Features]; F.3.2 [Se-
mantics of Programming Languages]: Operational semanticsKeywords algebraic effects; effect handlers; effect typing; mon-

ads; continuations; Haskell; modularity
1. Introduction
Monads have proven remarkably successful as a tool for abstrac-
tion over effectful computations [4, 30, 46]. However, monads as a
programming language primitive violate the fundamental encapsu-
lation principle: program to an interface, not to an implementation.

Modular programs are constructed using abstract interfaces as
building blocks. This is modular abstraction. To give meaning to
an abstract interface, we instantiate it with a concrete implemen-
tation. Given a composite interface, each sub-interface can be in-
dependently instantiated with different concrete implementations.
This is modular instantiation.The monadic approach to functional programming takes a con-
crete implementation rather than an abstract interface as primitive.
For instance, in Haskell we might define a state monad:

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.http://dx.doi.org/10.1145/2500365.2500590

newtype State s a = State {runState :: s ! (a, s)}
instance Monad (State s) wherereturn x = State (�s ! (x , s))m >>= f = State (�s ! let (x , s 0) = runState m s inrunState (f x) s 0)This definition says nothing about the intended use of State s a

as the type of computations that read and write state. Worse, it
breaks abstraction as consumers of state are exposed to its concrete
implementation as a function of type s ! (a, s). We can of
course define the natural get and put operations on state, but their
implementations are fixed.Jones [18] advocates modular abstraction for monads in Haskell
using type classes. For instance, we can define the following inter-
face to abstract state computation1:

class Monad m) MonadState s m | m ! s where
get :: m s
put :: s ! m ()

The MonadState interface can be smoothly combined with other
interfaces, taking advantage of Haskell’s type class mechanism to
represent type-level sets of effects.Monad transformers [25] provide a form of modular instantia-
tion for abstract monadic computations. For instance, state can be
handled in the presence of other effects by incorporating a state
monad transformer within a monad transformer stack.

A fundamental problem with monad transformer stacks is that
once a particular abstract effect is instantiated, the order of effects
in the stack becomes concrete, and it becomes necessary to explic-
itly lift operations through the stack. Taming the monad transformer
stack is an active research area [16, 17, 38, 42].Instead of the top-down monad transformer approach, we take
a bottom-up approach, simply adding the required features as lan-
guage primitives. We want modular abstraction, so we add abstract
effect interfaces, in fact abstract operations, as a language prim-
itive. Abstract operations compose, yielding modular abstraction.
We also want modular instantiation, so we add effect handlers as
a language primitive for instantiating an abstract operation with a
concrete implementation. A handler operates on a specified subset
of the abstract operations performed by an abstract computation,
leaving the remainder abstract, and yielding modular instantiation.

By directly adding the features we require, we obtain modular
abstraction and modular instantiation while avoiding many of the
pitfalls of monad transformers.Our first inspiration is the algebraic theory of computational
effects. Introduced by Plotkin and Power [33–35], it complements
Moggi’s monadic account of effects by incorporating abstract effect
interfaces as primitive. Our second inspiration is the elimination
construct for algebraic effects, effect handlers [36]. In Plotkin and
Power’s setting, one defines algebraic effects with respect to an
equational theory. As with other handler implementations [2, 6, 29],1 From the Monad Transformer Library [12].

wcString :: String ! IO ()

wcString s =

let (c,w , l) = handlePure (stringReader s wc) in

putStrLn $ (show l) ++ " "++ (show w) ++ " "++ (show c)

Here is a version of wc that uses standard input:

wcStdin :: IO ()

wcStdin = do

(c,w , l) handleIO (stdinReader wc)

putStrLn $ (show l) ++ " "++ (show w) ++ " "++ (show c)

In practice, one might define other handlers in order to support file

input, network input, or different forms of buffering.

2.5 Tail

The tail program takes an argument n and prints the last n lines of

a text file. In order to implement the functionality of tail , we make

use of readLine as well as two additional abstract operations: the

first to record a line, and the second to print all recorded lines.

[operation | SaveLine :: String ! () |]

[operation | PrintAll :: () |]

With these two operations, implementing an abstract tail computa-

tion tailComp is straightforward.

tailComp ::

([handles | h {ReadChar } |], [handles | h {Finished } |],

[handles | h {SaveLine } |], [handles | h {PrintAll } |])

) Comp h ()

tailComp =

do s readLine; saveLine s

b finished ; if b then printAll else tailComp

We now just need to handle the SaveLine and ReadLine opera-

tions. A naive handler might store all saved lines in memory, and

print the last n as required. In practice, a more efficient implemen-

tation might store only the last n lines, using a circular array, say.

2.6 Pipes and Shallow Handlers

The behaviour of handlers we have described thus far is such that

the continuation of an operation is handled with the current handler

(though the parameters passed to the continuation may differ from

the current parameters).
Another possible behaviour is for the continuation to return an

unhandled computation, which must then be handled explicitly. We

call such handlers shallow handlers because each handler only han-

dles one step of a computation, in contrast to Plotkin and Pretnar’s

deep handlers. Shallow handlers are to deep handlers as case anal-

ysis is to a fold on an algebraic data type.

Shallow handlers sometimes lead to slightly longer code. For

example, the EvalState handler from Section 2.1 becomes:

[shallowHandler |
EvalStateShallow s a :: s ! a

handles {Get s,Put s } where

Return x s ! x

Get k s ! evalStateShallow (k s) s

Put s k ! evalStateShallow (k ()) s |]

The need to call the handler recursively in most clauses is charac-

teristic of the style of program one writes with shallow handlers.

In some situations, it is helpful to have access to the unhandled

result of the continuation. Consider pipes as exemplified by Gon-

zalez’s pipes library [14]. A pipe is a data structure used to rep-

resent composable producers and consumers of data. A consumer

can await data and a producer can yield data. A pipe is both a

consumer and a producer. It is straightforward to provide such an

abstraction with the following operations5:

5 These operations have exactly the same signatures as Get and Put , but

their intended interpretation is different. For instance, yield x ; yield y is

in no way equivalent to yield y .

[operation | Await s :: s |]

[operation | Yield s :: s ! () |]

To define a plumbing operator that combines a compatible con-

sumer and producer we write two handlers: one handles the down-

stream consumer and keeps a suspended producer to resume when

needed, the other handles the upstream producer and keeps a sus-

pended consumer. These two handlers are straightforward to write

using shallow handlers:

[shallowHandler |
forward h.Down s a :: Comp (Up h a) a ! a

handles {Await s } where

Return x ! return x

Await k prod ! up k prod |]

[shallowHandler |
forward h.Up s a :: (s ! Comp (Down h a) a)! a

handles {Yield s } where

Return x ! return x

Yield s k cons ! down (k ()) (cons s) |]

However, transforming these handlers into deep handlers re-

quires some ingenuity. Indeed, we need to work with continuations

that are fully handled and we cannot keep the simple mutually re-

cursive structure of the two handlers. Instead, we introduce two

mutually recursive type definitions

data Prod s r = Prod (()! Cons s r ! r)

data Cons s r = Cons (s ! Prod s r ! r)

which we use to encode the suspended partner of each computation

[handler |
forward h.Down s a :: Prod s (Comp h a)! a

handles {Await s } where

Return x ! return x

Await k (Prod prod) ! prod () (Cons k) |]

[handler |
forward h.Up s a :: Cons s (Comp h a)! a

handles {Yield s } where

Return x ! return x

Yield s k (Cons cons)! cons s (Prod k) |]

resulting in a more complex program. We believe both deep and

shallow handlers are useful. For clarity of presentation, we focus on

deep handlers in the rest of this paper. In Section 3.4 and Section 4.2

we outline how shallow handlers differ from the main presentation.

2.7 Other Perspectives

In this paper we primarily treat handlers as a flexible tool for

interpreting abstract effectful computations. Before we proceed

with the rest of the paper we highlight some alternative perspectives

on what handlers are.

Generalised exception handlers. Benton and Kennedy [3] intro-

duced the idea of adding a return continuation to exception han-

dlers. Their return continuation corresponds exactly to the return

clause of an effect handler. Effect handler operation clauses gener-

alise exception handler clauses by adding a continuation argument,

providing support for arbitrary effects. An operation clause that ig-

nores its continuation argument behaves like a standard exception

handler clause.

Taming delimited continuations. A handler invocation delimits

the start of a continuation. Each operation clause captures the con-

tinuation of the computation currently being handled, that is, the

continuation up to the invocation point of the handler. Effect han-

dlers modularise delimited continuations by capturing particular

patterns of use. As Andrej Bauer, the co-creator of the Eff [2] lan-

HANDLERS

HANDLERS

Equations not only describe effects, but entail additional laws

Algebraic Foundations for Effect-Dependent Optimisations
Ohad Kammar Gordon D. PlotkinLaboratory for Foundations of Computer Science

School of Informatics, University of Edinburgh, Scotlandohad.kammar@ed.ac.uk gdp@ed.ac.uk

Abstract
We present a general theory of Gifford-style type and effect anno-
tations, where effect annotations are sets of effects. Generality is
achieved by recourse to the theory of algebraic effects, a develop-
ment of Moggi’s monadic theory of computational effects that em-
phasises the operations causing the effects at hand and their equa-
tional theory. The key observation is that annotation effects can be
identified with operation symbols.We develop an annotated version of Levy’s Call-by-Push-Value
language with a kind of computations for every effect set; it can
be thought of as a sequential, annotated intermediate language.
We develop a range of validated optimisations (i.e., equivalences),
generalising many existing ones and adding new ones. We classify
these optimisations as structural, algebraic, or abstract: structural
optimisations always hold; algebraic ones depend on the effect
theory at hand; and abstract ones depend on the global nature of
that theory (we give modularly-checkable sufficient conditions for
their validity).

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers; Optimization; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Logics of programs; F.3.2 [Semantics of Pro-
gramming Languages]: Algebraic approaches to semantics; Deno-
tational semantics; Program analysis; F.3.3 [Studies of Program
Constructs]: Type structure
General Terms Languages, Theory.Keywords Call-by-Push-Value, algebraic theory of effects, code
transformations, compiler optimisations, computational effects, de-
notational semantics, domain theory, inequational logic, relevant
and affine monads, sum and tensor, type and effect systems, uni-
versal algebra.

1. Introduction
In Gifford-style type and effect analysis [27], each term of a pro-
gramming language is assigned a type and an effect set. The type
describes the values the term may evaluate to; the effect set de-
scribes the effects the term may cause during its computation, such
as memory assignment, exception raising, or I/O.For example, consider the following term M :if true then x := 1 else x := deref(y)

[Copyright notice will appear here once ’preprint’ option is removed.]

It has unit type 1 as its sole purpose is to cause side effects;
it has effect set {update, lookup}, as it might cause memory
updates or look-ups. Type and effect systems commonly convey
this information via a type and effect judgement:x : Loc, y : Loc ⊢M : 1 ! {update, lookup}The information gathered by such effect analyses can be used

to guarantee implementation correctness1, to prove authenticity
properties [15], to aid resource management [44], or to optimise
code using transformations. We focus on the last of these. As an
example, purely functional code can be executed out of order:x←M1; y←M2; N = y←M2; x←M1; NThis reordering holds more generally, if the terms M1 and M2 have

non-interfering effects. Such transformations are commonly used in
optimising compilers. They are traditionally called optimisations,
even if neither side is always the more optimal.In a sequence of papers, Benton et al. [4–8] prove soundness of
such optimisations for increasingly complex sets of effects. How-
ever, any change in the language requires a complete reformulation
of its semantics and so of the soundness proofs, even though the
essential reasons for the validity of the optimisations remain the
same. Thus, this approach is not robust, as small language changes
cause global theory changes.A possible way to obtain robustness is to study effect systems
in general. One would hope for a modular approach, seeking to
isolate those parts of the theory that change under small language
changes, and then recombining them with the unchanging parts.
Such a theory may not only be important for compiler optimisations
in big, stable languages. It can also be used for effect-dependent
equational reasoning. This use may be especially helpful in the
case of small, domain-specific languages, as optimising compilers
are hardly ever designed for them and their diversity necessitates
proceeding modularly.The only available general work on effect systems seems to
be that of Marino and Millstein [28]. They devise a methodology
to derive type and effect frameworks which they apply to a call-
by-value language with recursion and references; however, their
methodology does not account for effect-dependent optimisations.

Fortunately, Wadler and Thiemann [46, 47] had previously
made an important connection with the monadic approach to
computational effects. They translated judgements of the form
Γ ⊢M : A ! ε in a region analysis calculus to judgements of the
form Γ′ ⊢M ′ : TεA in a multi-monadic calculus. They gave the
latter calculus an operational semantics, and conjectured the exis-
tence of a corresponding general monadic denotational semantics
in which Tε would denote a monad corresponding to the effects in
ε, and in which the partial order of effect sets and inclusions would1 E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links 0.5, 2009.

http://groups.inf.ed.ac.uk/links .

1

2011/11/16

Dropping equations due to handlers weakens the results of the logic

𝚏𝚊𝚒𝚕 : 0
𝚌𝚑𝚘𝚘𝚜𝚎 : 2

operations
𝚌𝚑𝚘𝚘𝚜𝚎 (𝚌𝚑𝚘𝚘𝚜𝚎 M N) P = 𝚌𝚑𝚘𝚘𝚜𝚎 M (𝚌𝚑𝚘𝚘𝚜𝚎 N P)

𝚌𝚑𝚘𝚘𝚜𝚎 M N = 𝚌𝚑𝚘𝚘𝚜𝚎 N M
𝚌𝚑𝚘𝚘𝚜𝚎 M M = M

𝚌𝚑𝚘𝚘𝚜𝚎 𝚏𝚊𝚒𝚕 M = M = 𝚌𝚑𝚘𝚘𝚜𝚎 M 𝚏𝚊𝚒𝚕

equations

𝚍𝚘 x ⇐ (𝚌𝚑𝚘𝚘𝚜𝚎 M N) 𝚒𝚗 P = 𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 P) (𝚍𝚘 x ⇐ N 𝚒𝚗 P)

algebraicity

Dropping equations due to handlers weakens the results of the logic

𝚏𝚊𝚒𝚕 : 0
𝚌𝚑𝚘𝚘𝚜𝚎 : 2

operations
𝚌𝚑𝚘𝚘𝚜𝚎 (𝚌𝚑𝚘𝚘𝚜𝚎 M N) P = 𝚌𝚑𝚘𝚘𝚜𝚎 M (𝚌𝚑𝚘𝚘𝚜𝚎 N P)

𝚌𝚑𝚘𝚘𝚜𝚎 M N = 𝚌𝚑𝚘𝚘𝚜𝚎 N M
𝚌𝚑𝚘𝚘𝚜𝚎 M M = M

𝚌𝚑𝚘𝚘𝚜𝚎 𝚏𝚊𝚒𝚕 M = M = 𝚌𝚑𝚘𝚘𝚜𝚎 M 𝚏𝚊𝚒𝚕

equations

𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 N) (𝚍𝚘 x ⇐ M 𝚒𝚗 P) = 𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚌𝚑𝚘𝚘𝚜𝚎 N P)
𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚍𝚘 y ⇐ N 𝚒𝚗 P) = 𝚍𝚘 y ⇐ N 𝚒𝚗 (𝚍𝚘 x ⇐ M 𝚒𝚗 P)

nondeterministic laws

𝚍𝚘 x ⇐ (𝚌𝚑𝚘𝚘𝚜𝚎 M N) 𝚒𝚗 P = 𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 P) (𝚍𝚘 x ⇐ N 𝚒𝚗 P)

algebraicity

Dropping equations due to handlers weakens the results of the logic

𝚏𝚊𝚒𝚕 : 0
𝚌𝚑𝚘𝚘𝚜𝚎 : 2

operations

𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 N) (𝚍𝚘 x ⇐ M 𝚒𝚗 P) = 𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚌𝚑𝚘𝚘𝚜𝚎 N P)
𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚍𝚘 y ⇐ N 𝚒𝚗 P) = 𝚍𝚘 y ⇐ N 𝚒𝚗 (𝚍𝚘 x ⇐ M 𝚒𝚗 P)

nondeterministic laws

𝚍𝚘 x ⇐ (𝚌𝚑𝚘𝚘𝚜𝚎 M N) 𝚒𝚗 P = 𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 P) (𝚍𝚘 x ⇐ N 𝚒𝚗 P)

algebraicity

Dropping equations due to handlers weakens the results of the logic

𝚏𝚊𝚒𝚕 : 0
𝚌𝚑𝚘𝚘𝚜𝚎 : 2

operations

𝚍𝚘 x ⇐ (𝚌𝚑𝚘𝚘𝚜𝚎 M N) 𝚒𝚗 P = 𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 P) (𝚍𝚘 x ⇐ N 𝚒𝚗 P)

algebraicity

Certain laws can be reconstructed under a particular handler

AN EFFECT SYSTEM FOR ALGEBRAIC EFFECTS AND HANDLERSANDREJ BAUER AND MATIJA PRETNARFaculty of Mathematics and Physics, University of Ljubljana, Slovenia

e-mail address: Andrej.Bauer@andrej.comFaculty of Mathematics and Physics, University of Ljubljana, Slovenia

e-mail address: matija.pretnar@fmf.uni-lj.si

Abstract. We present an e↵ect system for core E↵, a simplified variant of E↵ , which is

an ML-style programming language with first-class algebraic e↵ects and handlers. We de-

fine an expressive e↵ect system and prove safety of operational semantics with respect to it.

Then we give a domain-theoretic denotational semantics of core E↵ , using Pitts’s theory

of minimal invariant relations, and prove it adequate. We use this fact to develop tools

for finding useful contextual equivalences, including an induction principle. To demon-

strate their usefulness, we use these tools to derive the usual equations for mutable state,

including a general commutativity law for computations using non-interfering references.

We have formalized the e↵ect system, the operational semantics, and the safety theorem

in Twelf.

1. IntroductionAn e↵ect system supplements a traditional type system for a programming language with

information about which computational e↵ects may, will, or will not happen when a piece of

code is executed. A well designed and solidly implemented e↵ect system helps programmers

understand source code, find mistakes, as well as safely rearrange, optimize, and parallelize

code [11, 8]. As many before us [11, 24, 25, 7] we take on the task of striking just the right

balance between simplicity and expressiveness by devising an e↵ect system for E↵ [2], an

ML-style programming language with first-class algebraic e↵ects [17, 15] and handlers [19].

Our e↵ect system is descriptive in the sense that it provides information about pos-

sible computational e↵ects but it does not prescribe them. In contrast, Haskell’s monads

prescribe the possible e↵ects by wrapping types into computational monads. In the imple-

mentation we envision e↵ect inference which never fails, although in some cases it may be

uninformative. Of course, typing errors are still errors.
An important feature of our e↵ect system is non-monotonicity : it detects the fact that

a handler removes some e↵ects. For instance, a piece of code which uses mutable state is

determined to actually be pure when wrapped by a handler that handles away lookups and

updates.

1998 ACM Subject Classification: D3.3, F3.2, F3.3.
Key words and phrases: algebraic e↵ects, e↵ect handlers, e↵ect system.

A preliminary version of this work was presented at CALCO 2013, see [3].
LOGICAL METHODSIN COMPUTER SCIENCE

DOI:10.2168/LMCS-??? c� Andrej Bauer and Matija PretnarCreative Commons
1

Certain laws can be reconstructed under a particular handler

AN EFFECT SYSTEM FOR ALGEBRAIC EFFECTS AND HANDLERSANDREJ BAUER AND MATIJA PRETNARFaculty of Mathematics and Physics, University of Ljubljana, Slovenia

e-mail address: Andrej.Bauer@andrej.comFaculty of Mathematics and Physics, University of Ljubljana, Slovenia

e-mail address: matija.pretnar@fmf.uni-lj.si

Abstract. We present an e↵ect system for core E↵, a simplified variant of E↵ , which is

an ML-style programming language with first-class algebraic e↵ects and handlers. We de-

fine an expressive e↵ect system and prove safety of operational semantics with respect to it.

Then we give a domain-theoretic denotational semantics of core E↵ , using Pitts’s theory

of minimal invariant relations, and prove it adequate. We use this fact to develop tools

for finding useful contextual equivalences, including an induction principle. To demon-

strate their usefulness, we use these tools to derive the usual equations for mutable state,

including a general commutativity law for computations using non-interfering references.

We have formalized the e↵ect system, the operational semantics, and the safety theorem

in Twelf.

1. IntroductionAn e↵ect system supplements a traditional type system for a programming language with

information about which computational e↵ects may, will, or will not happen when a piece of

code is executed. A well designed and solidly implemented e↵ect system helps programmers

understand source code, find mistakes, as well as safely rearrange, optimize, and parallelize

code [11, 8]. As many before us [11, 24, 25, 7] we take on the task of striking just the right

balance between simplicity and expressiveness by devising an e↵ect system for E↵ [2], an

ML-style programming language with first-class algebraic e↵ects [17, 15] and handlers [19].

Our e↵ect system is descriptive in the sense that it provides information about pos-

sible computational e↵ects but it does not prescribe them. In contrast, Haskell’s monads

prescribe the possible e↵ects by wrapping types into computational monads. In the imple-

mentation we envision e↵ect inference which never fails, although in some cases it may be

uninformative. Of course, typing errors are still errors.
An important feature of our e↵ect system is non-monotonicity : it detects the fact that

a handler removes some e↵ects. For instance, a piece of code which uses mutable state is

determined to actually be pure when wrapped by a handler that handles away lookups and

updates.

1998 ACM Subject Classification: D3.3, F3.2, F3.3.
Key words and phrases: algebraic e↵ects, e↵ect handlers, e↵ect system.

A preliminary version of this work was presented at CALCO 2013, see [3].
LOGICAL METHODSIN COMPUTER SCIENCE

DOI:10.2168/LMCS-??? c� Andrej Bauer and Matija PretnarCreative Commons
1

AN EFFECT SYSTEM FOR ALGEBRAIC EFFECTS AND HANDLERS 25

the type becomes unit ! {◆1#lookup, ◆1#upd
ate}. When the handler h1 = state◆1 is used

on top of that,

let f1 =
�
with h1 handle

�
let f2 = (with h2 handle c) in f2 e2

��
in f1 e1

we get the pure type unit !?. Beware, it is important that the state is initialized at the

correct point in the computation. For instanc
e,

let f1 =
�
with h1 handle (with h2 handle c)

�
in (let f2 = f1 e1 in f2 e2)

does not do the right thing. We are warned about possible trouble by the e↵ect system

which gives the computation the type unit ! {◆1#lookup, ◆1#update
} — the operations for

◆1 are escaping the handlers! A less modular way of handling two instances is to create a

new handler with four operation cases, two for each of the instances.

7.1. Reasoning about references. With handlers the workings
of a computation may be

inspected in a highly intensional way. Cons
equently, there are few generally valid observa-

tional equivalences. H
owever, when known handlers are used to handle operations, we may

derive equivalences that describe the behavior of operations. The situation is opposite to

that of [19], where we start with an equational theory for operations and require that the

handlers respect it.

We demonstrate the technique for mutable state. Let h = state◆ and abbreviate

let f = (with h handle c) in f e

as H[c, e]. Straightforward
calculations give us the equivalences

H[(◆#lookup () (y. c)), e
] ⌘ H[c[e/y], e]

H[(◆#update e
0 (_ . c)), e] ⌘ H[c, e0]

H[val e0, e] ⌘ val e0,

for instance,

H[(◆#update e
0 (_ . c)), e]

⌘ let f = val (fun s 7! let f 0 = (fun _ 7! with h handle c) () in f 0 e0) in f e

⌘ let f = val (fun s 7! H[c, e0]) in f e

⌘ (fun s 7! H[c, e0]) e

⌘ H[c, e0].

These su�ce for simple equational reasoning
about state. If we read them as rewrite rules

they allow us to progressively transform a computation to a simpler form. In fact, the

transformations mimic the usual coalgebraic operational semantics for state [18].

Of course, a realistic computation will contain several handlers. As l
ong as they do not

interfere with each other, we can still use equivalences to usefully manipulate them. For

example, if h
0 is a handler with no operation case for ◆#lookup then

H[(with h0 handle ◆#lookup () (y. c)), e]

⌘ H[(◆#lookup () (y. with
h0 handle c)), e]

⌘ H[(with h0 handle c[e/y]), e].

It may happen that a lookup or an update is nested deeply inside several handlers. The

above transformation allows us to hoist the operation out of the inner handlers so that it

Certain laws can be reconstructed under a particular handler

AN EFFECT SYSTEM FOR ALGEBRAIC EFFECTS AND HANDLERSANDREJ BAUER AND MATIJA PRETNARFaculty of Mathematics and Physics, University of Ljubljana, Slovenia

e-mail address: Andrej.Bauer@andrej.comFaculty of Mathematics and Physics, University of Ljubljana, Slovenia

e-mail address: matija.pretnar@fmf.uni-lj.si

Abstract. We present an e↵ect system for core E↵, a simplified variant of E↵ , which is

an ML-style programming language with first-class algebraic e↵ects and handlers. We de-

fine an expressive e↵ect system and prove safety of operational semantics with respect to it.

Then we give a domain-theoretic denotational semantics of core E↵ , using Pitts’s theory

of minimal invariant relations, and prove it adequate. We use this fact to develop tools

for finding useful contextual equivalences, including an induction principle. To demon-

strate their usefulness, we use these tools to derive the usual equations for mutable state,

including a general commutativity law for computations using non-interfering references.

We have formalized the e↵ect system, the operational semantics, and the safety theorem

in Twelf.

1. IntroductionAn e↵ect system supplements a traditional type system for a programming language with

information about which computational e↵ects may, will, or will not happen when a piece of

code is executed. A well designed and solidly implemented e↵ect system helps programmers

understand source code, find mistakes, as well as safely rearrange, optimize, and parallelize

code [11, 8]. As many before us [11, 24, 25, 7] we take on the task of striking just the right

balance between simplicity and expressiveness by devising an e↵ect system for E↵ [2], an

ML-style programming language with first-class algebraic e↵ects [17, 15] and handlers [19].

Our e↵ect system is descriptive in the sense that it provides information about pos-

sible computational e↵ects but it does not prescribe them. In contrast, Haskell’s monads

prescribe the possible e↵ects by wrapping types into computational monads. In the imple-

mentation we envision e↵ect inference which never fails, although in some cases it may be

uninformative. Of course, typing errors are still errors.
An important feature of our e↵ect system is non-monotonicity : it detects the fact that

a handler removes some e↵ects. For instance, a piece of code which uses mutable state is

determined to actually be pure when wrapped by a handler that handles away lookups and

updates.

1998 ACM Subject Classification: D3.3, F3.2, F3.3.
Key words and phrases: algebraic e↵ects, e↵ect handlers, e↵ect system.

A preliminary version of this work was presented at CALCO 2013, see [3].
LOGICAL METHODSIN COMPUTER SCIENCE

DOI:10.2168/LMCS-??? c� Andrej Bauer and Matija PretnarCreative Commons
1

AN EFFECT SYSTEM FOR ALGEBRAIC EFFECTS AND HANDLERS 25

the type becomes unit ! {◆1#lookup, ◆1#upd
ate}. When the handler h1 = state◆1 is used

on top of that,

let f1 =
�
with h1 handle

�
let f2 = (with h2 handle c) in f2 e2

��
in f1 e1

we get the pure type unit !?. Beware, it is important that the state is initialized at the

correct point in the computation. For instanc
e,

let f1 =
�
with h1 handle (with h2 handle c)

�
in (let f2 = f1 e1 in f2 e2)

does not do the right thing. We are warned about possible trouble by the e↵ect system

which gives the computation the type unit ! {◆1#lookup, ◆1#update
} — the operations for

◆1 are escaping the handlers! A less modular way of handling two instances is to create a

new handler with four operation cases, two for each of the instances.

7.1. Reasoning about references. With handlers the workings
of a computation may be

inspected in a highly intensional way. Cons
equently, there are few generally valid observa-

tional equivalences. H
owever, when known handlers are used to handle operations, we may

derive equivalences that describe the behavior of operations. The situation is opposite to

that of [19], where we start with an equational theory for operations and require that the

handlers respect it.

We demonstrate the technique for mutable state. Let h = state◆ and abbreviate

let f = (with h handle c) in f e

as H[c, e]. Straightforward
calculations give us the equivalences

H[(◆#lookup () (y. c)), e
] ⌘ H[c[e/y], e]

H[(◆#update e
0 (_ . c)), e] ⌘ H[c, e0]

H[val e0, e] ⌘ val e0,

for instance,

H[(◆#update e
0 (_ . c)), e]

⌘ let f = val (fun s 7! let f 0 = (fun _ 7! with h handle c) () in f 0 e0) in f e

⌘ let f = val (fun s 7! H[c, e0]) in f e

⌘ (fun s 7! H[c, e0]) e

⌘ H[c, e0].

These su�ce for simple equational reasoning
about state. If we read them as rewrite rules

they allow us to progressively transform a computation to a simpler form. In fact, the

transformations mimic the usual coalgebraic operational semantics for state [18].

Of course, a realistic computation will contain several handlers. As l
ong as they do not

interfere with each other, we can still use equivalences to usefully manipulate them. For

example, if h
0 is a handler with no operation case for ◆#lookup then

H[(with h0 handle ◆#lookup () (y. c)), e]

⌘ H[(◆#lookup () (y. with
h0 handle c)), e]

⌘ H[(with h0 handle c[e/y]), e].

It may happen that a lookup or an update is nested deeply inside several handlers. The

above transformation allows us to hoist the operation out of the inner handlers so that it

26
ANDREJ BAUER AND MATIJA PRETNAR

is handled by the outer handler, as long
as the inner handlers do not attempt to handle ◆.

The transformation applies to let bindings too, as they
are like handlers with

out operation

cases.
We may validate the seven standard equations governing state [16]. There are four

combinations of lookup and update (in the first equation y does not occur free in c):

H[◆#lookup () (y. ◆#upd
ate y (_ . c)), e] ⌘ H[c, e]

H[◆#lookup () (y. ◆#loo
kup () (z. c)), e] ⌘ H[◆#lookup () (y. c[y/z

]), e]

H[◆#update e (_ . ◆#upda
te e0 (_ . c)), e] ⌘ H[◆#update e

0 (_ . c), e]

H[◆#update e (_ . ◆#look
up () (y. c)), e] ⌘ H[◆#update e (_ . c[e/y])

, e]

For instance, the first equation is validated as follows:

H[◆#lookup () (y. ◆#upd
ate y (_ . c)), e]

⌘ H[◆#update e (_ . c), e]

⌘ H[c, e]

Three more equations describe
commutativity of lookups and updates at di↵erent di

stances.

Let ◆1 6= ◆2, and write H1 and H2 for the the abbreviation H with respect to ◆1 and ◆2,

respectively:

H1[H2[◆1#lookup () (
y1. ◆2#lookup ()

(y2. c)), e2], e1]

⌘ H1[H2[◆2#lookup () (
y2. ◆1#lookup ()

(y1. c)), e2], e1]

H1[H2[◆1#update e1 (
_ . ◆2#update e2 (_ .

c)), e2], e1]

⌘ H1[H2[◆2#update e2 (
_ . ◆1#update e1 (_ .

c)), e2], e1]

H1[H2[◆1#update e (_
. ◆2#lookup () (y2

. c)), e2], e1]

⌘ H1[H2[◆2#lookup () (
y2. ◆1#update e (_

. c)), e2], e1]

Let us check the last equation. The left-hand side transforms as

H1[H2[◆1#update e (_
. ◆2#lookup () (y2

. c)), e2], e1]

⌘ H1[◆1#update e (_
.H2[◆2#lookup () (

y2. c), e2]), e1]

⌘ H1[H2[◆2#lookup () (
y2. c), e2], e]

⌘ H1[H2[c[e2/y2], e2], e]

and the right-hand side as

H1[H2[◆2#lookup () (
y2. ◆1#update e (_

. c)), e2], e1]

⌘ H1[H2[◆1#update e (_
. c[e2/y2]), e2], e1]

⌘ H1[◆1#update e (_
.H2[c[e2/y2], e2]), e1

]

⌘ H1[H2[c[e2/y2], e2], e]
.

The remaining two equations a
re proved much the same way. The symmetry in the equations

also shows that it does no
t matter in which order we nest the handlers for ◆1 and ◆2.

The technique can and has to be repeated for any concrete handler

The technique can and has to be repeated for any concrete handler

ℋmax[M] = 𝚠𝚒𝚝𝚑 Hmax 𝚑𝚊𝚗𝚍𝚕𝚎 M
ℋmax[𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 N) (𝚍𝚘 x ⇐ M 𝚒𝚗 P)] = ℋmax[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚌𝚑𝚘𝚘𝚜𝚎 N P)]

ℋmax[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚍𝚘 y ⇐ N 𝚒𝚗 P)] = ℋmax[𝚍𝚘 y ⇐ N 𝚒𝚗 (𝚍𝚘 x ⇐ M 𝚒𝚗 P)]

The technique can and has to be repeated for any concrete handler

ℋmax[M] = 𝚠𝚒𝚝𝚑 Hmax 𝚑𝚊𝚗𝚍𝚕𝚎 M
ℋmax[𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 N) (𝚍𝚘 x ⇐ M 𝚒𝚗 P)] = ℋmax[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚌𝚑𝚘𝚘𝚜𝚎 N P)]

ℋmax[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚍𝚘 y ⇐ N 𝚒𝚗 P)] = ℋmax[𝚍𝚘 y ⇐ N 𝚒𝚗 (𝚍𝚘 x ⇐ M 𝚒𝚗 P)]

ℋsum[M] = 𝚠𝚒𝚝𝚑 Hsum 𝚑𝚊𝚗𝚍𝚕𝚎 M
ℋsum[𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 N) (𝚍𝚘 x ⇐ M 𝚒𝚗 P)] = ℋsum[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚌𝚑𝚘𝚘𝚜𝚎 N P)]

ℋsum[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚍𝚘 y ⇐ N 𝚒𝚗 P)] = ℋsum[𝚍𝚘 y ⇐ N 𝚒𝚗 (𝚍𝚘 x ⇐ M 𝚒𝚗 P)]

The technique can and has to be repeated for any concrete handler

ℋmax[M] = 𝚠𝚒𝚝𝚑 Hmax 𝚑𝚊𝚗𝚍𝚕𝚎 M
ℋmax[𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 N) (𝚍𝚘 x ⇐ M 𝚒𝚗 P)] = ℋmax[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚌𝚑𝚘𝚘𝚜𝚎 N P)]

ℋmax[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚍𝚘 y ⇐ N 𝚒𝚗 P)] = ℋmax[𝚍𝚘 y ⇐ N 𝚒𝚗 (𝚍𝚘 x ⇐ M 𝚒𝚗 P)]

ℋsum[M] = 𝚠𝚒𝚝𝚑 Hsum 𝚑𝚊𝚗𝚍𝚕𝚎 M
ℋsum[𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 N) (𝚍𝚘 x ⇐ M 𝚒𝚗 P)] = ℋsum[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚌𝚑𝚘𝚘𝚜𝚎 N P)]

ℋsum[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚍𝚘 y ⇐ N 𝚒𝚗 P)] = ℋsum[𝚍𝚘 y ⇐ N 𝚒𝚗 (𝚍𝚘 x ⇐ M 𝚒𝚗 P)]

ℋlist[M] = 𝚠𝚒𝚝𝚑 Hlist 𝚑𝚊𝚗𝚍𝚕𝚎 M
ℋlist[𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 N) (𝚍𝚘 x ⇐ M 𝚒𝚗 P)] = ℋlist[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚌𝚑𝚘𝚘𝚜𝚎 N P)]

ℋlist[𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚍𝚘 y ⇐ N 𝚒𝚗 P)] ≠ ℋlist[𝚍𝚘 y ⇐ N 𝚒𝚗 (𝚍𝚘 x ⇐ M 𝚒𝚗 P)]

Different handlers satisfy varying equations

max sum list
left
right swap

assoc ✔ ✔ ✔ ✔ ✔

comm ✔ ✔ ✘ ✘ ✔

idem ✔ ✘ ✘ ✔ ✔

unit ✔ ✔ ✔ ✘ ✔

Could equations be tracked with an effect system?

Could equations be tracked with an effect system?

[[σ!φ]] = Tφ[[σ]]
[[σ!φ/ℰ]] = Tφ[[σ]]/ ∼ℰ

Could equations be tracked with an effect system?

[[σ!φ]] = Tφ[[σ]]
[[σ!φ/ℰ]] = Tφ[[σ]]/ ∼ℰ

(absolutely) free model

Could equations be tracked with an effect system?

[[σ!φ]] = Tφ[[σ]]
[[σ!φ/ℰ]] = Tφ[[σ]]/ ∼ℰ

equivalence
relation

(absolutely) free model

Could equations be tracked with an effect system?

[[σ!φ]] = Tφ[[σ]]
[[σ!φ/ℰ]] = Tφ[[σ]]/ ∼ℰ

equivalence
relation

(absolutely) free model

Γ ⊢ M : σ!φ

Could equations be tracked with an effect system?

[[σ!φ]] = Tφ[[σ]]
[[σ!φ/ℰ]] = Tφ[[σ]]/ ∼ℰ

equivalence
relation

(absolutely) free model

Γ ⊢ M : σ!φ
operations

Could equations be tracked with an effect system?

[[σ!φ]] = Tφ[[σ]]
[[σ!φ/ℰ]] = Tφ[[σ]]/ ∼ℰ

equivalence
relation

(absolutely) free model

Γ ⊢ M : σ!φ
operations

/ℰ

Could equations be tracked with an effect system?

[[σ!φ]] = Tφ[[σ]]
[[σ!φ/ℰ]] = Tφ[[σ]]/ ∼ℰ

equivalence
relation

(absolutely) free model

Γ ⊢ M : σ!φ
equationsoperations

/ℰ

Previous reasoning can be factored into two parts

Previous reasoning can be factored into two parts

Hmax : 𝚒𝚗𝚝!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/
ℰ

{𝚊𝚜𝚜𝚘𝚌, 𝚌𝚘𝚖𝚖, 𝚒𝚍𝚎𝚖, 𝚞𝚗𝚒𝚝} ⇒ 𝚒𝚗𝚝!∅/∅
Hsum : 𝚒𝚗𝚝!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/ℰ ⇒ 𝚒𝚗𝚝!∅/∅
Hlist : 𝚒𝚗𝚝!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚞𝚗𝚒𝚝} ⇒ 𝚒𝚗𝚝 𝚕𝚒𝚜𝚝!∅/∅
Hleft : τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚒𝚍𝚎𝚖, 𝚞𝚗𝚒𝚝} ⇒ τ!{𝚏𝚊𝚒𝚕}/∅

Hswap : τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚞𝚗𝚒𝚝} ⇒ τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚞𝚗𝚒𝚝}
Hswap : τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/ℰ ⇒ τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/ℰ

handlers respect equations

Previous reasoning can be factored into two parts

Hmax : 𝚒𝚗𝚝!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/
ℰ

{𝚊𝚜𝚜𝚘𝚌, 𝚌𝚘𝚖𝚖, 𝚒𝚍𝚎𝚖, 𝚞𝚗𝚒𝚝} ⇒ 𝚒𝚗𝚝!∅/∅
Hsum : 𝚒𝚗𝚝!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/ℰ ⇒ 𝚒𝚗𝚝!∅/∅
Hlist : 𝚒𝚗𝚝!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚞𝚗𝚒𝚝} ⇒ 𝚒𝚗𝚝 𝚕𝚒𝚜𝚝!∅/∅
Hleft : τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚒𝚍𝚎𝚖, 𝚞𝚗𝚒𝚝} ⇒ τ!{𝚏𝚊𝚒𝚕}/∅

Hswap : τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚞𝚗𝚒𝚝} ⇒ τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚞𝚗𝚒𝚝}
Hswap : τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/ℰ ⇒ τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/ℰ

handlers respect equations

Previous reasoning can be factored into two parts

Hmax : 𝚒𝚗𝚝!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/
ℰ

{𝚊𝚜𝚜𝚘𝚌, 𝚌𝚘𝚖𝚖, 𝚒𝚍𝚎𝚖, 𝚞𝚗𝚒𝚝} ⇒ 𝚒𝚗𝚝!∅/∅
Hsum : 𝚒𝚗𝚝!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/ℰ ⇒ 𝚒𝚗𝚝!∅/∅
Hlist : 𝚒𝚗𝚝!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚞𝚗𝚒𝚝} ⇒ 𝚒𝚗𝚝 𝚕𝚒𝚜𝚝!∅/∅
Hleft : τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚒𝚍𝚎𝚖, 𝚞𝚗𝚒𝚝} ⇒ τ!{𝚏𝚊𝚒𝚕}/∅

Hswap : τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚞𝚗𝚒𝚝} ⇒ τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/{𝚊𝚜𝚜𝚘𝚌, 𝚞𝚗𝚒𝚝}
Hswap : τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/ℰ ⇒ τ!{𝚌𝚑𝚘𝚘𝚜𝚎, 𝚏𝚊𝚒𝚕}/ℰ

𝚌𝚑𝚘𝚘𝚜𝚎 (𝚍𝚘 x ⇐ M 𝚒𝚗 N) (𝚍𝚘 x ⇐ M 𝚒𝚗 P) =ℰ 𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚌𝚑𝚘𝚘𝚜𝚎 N P)
𝚍𝚘 x ⇐ M 𝚒𝚗 (𝚍𝚘 y ⇐ N 𝚒𝚗 P) =ℰ 𝚍𝚘 y ⇐ N 𝚒𝚗 (𝚍𝚘 x ⇐ M 𝚒𝚗 P)

handlers respect equations

equations imply properties

Typing rules for monadic constructs

Γ ⊢ M : σ!φ/ℰ Γ, x : σ ⊢ N : τ!φ/ℰ
Γ ⊢ 𝚍𝚘 x ⇐ M 𝚒𝚗 P : τ!φ/ℰ

Γ ⊢ V : σ
Γ ⊢ 𝚟𝚊𝚕 V : σ!φ/ℰ

Γ ⊢ V : σ (F : σ →→ τ) ∈ φ
Γ ⊢ 𝚙𝚎𝚛𝚏𝚘𝚛𝚖 F V : τ!φ/ℰ

Handling and subsumption typing rules

Γ ⊢ H : σ!φ/ℰ ⇒ τ!φ′ /ℰ′ Γ ⊢ M : σ!φ/ℰ
Γ ⊢ 𝚠𝚒𝚝𝚑 H 𝚑𝚊𝚗𝚍𝚕𝚎 M : τ!φ′ /ℰ′

Γ ⊢ M : σ!φ/ℰ σ <: σ′ φ ⊆ φ′ ℰ′ ⊨ ℰ
Γ ⊢ M : σ′ !φ′ /ℰ′

Handling and subsumption typing rules

Γ ⊢ H : σ!φ/ℰ ⇒ τ!φ′ /ℰ′ Γ ⊢ M : σ!φ/ℰ
Γ ⊢ 𝚠𝚒𝚝𝚑 H 𝚑𝚊𝚗𝚍𝚕𝚎 M : τ!φ′ /ℰ′

Γ ⊢ M : σ!φ/ℰ σ <: σ′ φ ⊆ φ′ ℰ′ ⊨ ℰ
Γ ⊢ M : σ′ !φ′ /ℰ′

Handler typing rule and instantiation of theory equations

Γ ⊢ H:σ!φ ⇝ τ!φ′ /ℰ′

[Γ ⊢ H[T1] = H[T2]:τ!φ′ /ℰ′](T1=T2)∈ℰ

Γ ⊢ H : σ!φ/ℰ ⇒ τ!φ′ /ℰ′

(T1 = T2) ∈ ℰ [Γ ⊢ Mi : σ!φ/ℰ]i

Γ ⊢ T1(M1, …, Mn) = T2(M1, …, Mn) : σ!φ/ℰ

Handler typing rule and instantiation of theory equations

Γ ⊢ H:σ!φ ⇝ τ!φ′ /ℰ′

[Γ ⊢ H[T1] = H[T2]:τ!φ′ /ℰ′](T1=T2)∈ℰ

Γ ⊢ H : σ!φ/ℰ ⇒ τ!φ′ /ℰ′

(T1 = T2) ∈ ℰ [Γ ⊢ Mi : σ!φ/ℰ]i

Γ ⊢ T1(M1, …, Mn) = T2(M1, …, Mn) : σ!φ/ℰ

well-typed
handling
clauses

Handler typing rule and instantiation of theory equations

Γ ⊢ H:σ!φ ⇝ τ!φ′ /ℰ′

[Γ ⊢ H[T1] = H[T2]:τ!φ′ /ℰ′](T1=T2)∈ℰ

Γ ⊢ H : σ!φ/ℰ ⇒ τ!φ′ /ℰ′

(T1 = T2) ∈ ℰ [Γ ⊢ Mi : σ!φ/ℰ]i

Γ ⊢ T1(M1, …, Mn) = T2(M1, …, Mn) : σ!φ/ℰ

respecting
equations

well-typed
handling
clauses

This work has only partly been put into practice
ZU064-05-FPR main 22 January 2019 22:9

Under consideration for publication in J. Functional Programming
1

Local Algebraic Effect Theories
Žiga Lukšič and Matija Pretnar⇤University of Ljubljana, Faculty of Mathematics and Physics, Slovenia

(e-mail: ziga.luksic@fmf.uni-lj.si, matija.pretnar@fmf.uni-lj.si)

AbstractAlgebraic effects are computational effects that can be described with a set of basic operations and

equations between them. As many interesting effect handlers do not respect these equations, most

approaches assume a trivial theory, sacrificing both reasoning power and safety.
We present an alternative approach where the type system tracks equations that are observed

in subparts of the program, yielding a sound and flexible logic, and paving a way for practical

optimizations and reasoning tools.

Algebraic effects are computational effects that can be described by a signature of primitive

operations and a collection of equations between them (Plotkin & Power, 2001; Plotkin &

Power, 2003), while algebraic effect handlers are a generalization of exception handlers

to arbitrary algebraic effects (Plotkin & Pretnar, 2009; Plotkin & Pretnar, 2013). Even

though the early work considered only handlers that respect equations of the effect theory, a

considerable amount of useful handlers did not, and the restriction was dropped in most —

though not all (Ahman, 2018) — of the later work on handlers (Kammar et al., 2013; Bauer

& Pretnar, 2015; Leijen, 2017; Biernacki et al., 2018), resulting in a weaker reasoning logic

and imprecise specifications.Our aim is to rectify this by reintroducing effect theories into the type system, tracking

equations observed in parts of a program. On one hand, the induced logic allows us to

rewrite computations into equivalent ones with respect to the effect theory, while on the

other hand, the type system enforces that handlers preserve equivalences, further specifying

their behaviour. After an informal overview in Section 1, we proceed as follows:
• The syntax of the working language, its operational semantics, and the typing rules

are given in Section 2.• Determining if a handler respects an effect theory is in general undecidable (Plotkin

& Pretnar, 2013), so there is no canonical way of defining such a judgement. There-

fore, the typing rules are given parametric to a reasoning logic, and in Section 3, we

present some of the more interesting choices.• Since the definition of typing judgements is intertwined with a reasoning logic, we

must be careful when defining the denotation of types and terms. Thus, in Section 4,

we first introduce a set-based denotational semantics that disregards effect theories

and prove the expected meta-theoretic properties.
⇤ This material is based upon work supported by the Air Force Office of Scientific Research under

award number FA9550-17-1-0326.

This work has only partly been put into practice
ZU064-05-FPR main 22 January 2019 22:9

Under consideration for publication in J. Functional Programming
1

Local Algebraic Effect Theories
Žiga Lukšič and Matija Pretnar⇤University of Ljubljana, Faculty of Mathematics and Physics, Slovenia

(e-mail: ziga.luksic@fmf.uni-lj.si, matija.pretnar@fmf.uni-lj.si)

AbstractAlgebraic effects are computational effects that can be described with a set of basic operations and

equations between them. As many interesting effect handlers do not respect these equations, most

approaches assume a trivial theory, sacrificing both reasoning power and safety.
We present an alternative approach where the type system tracks equations that are observed

in subparts of the program, yielding a sound and flexible logic, and paving a way for practical

optimizations and reasoning tools.

Algebraic effects are computational effects that can be described by a signature of primitive

operations and a collection of equations between them (Plotkin & Power, 2001; Plotkin &

Power, 2003), while algebraic effect handlers are a generalization of exception handlers

to arbitrary algebraic effects (Plotkin & Pretnar, 2009; Plotkin & Pretnar, 2013). Even

though the early work considered only handlers that respect equations of the effect theory, a

considerable amount of useful handlers did not, and the restriction was dropped in most —

though not all (Ahman, 2018) — of the later work on handlers (Kammar et al., 2013; Bauer

& Pretnar, 2015; Leijen, 2017; Biernacki et al., 2018), resulting in a weaker reasoning logic

and imprecise specifications.Our aim is to rectify this by reintroducing effect theories into the type system, tracking

equations observed in parts of a program. On one hand, the induced logic allows us to

rewrite computations into equivalent ones with respect to the effect theory, while on the

other hand, the type system enforces that handlers preserve equivalences, further specifying

their behaviour. After an informal overview in Section 1, we proceed as follows:
• The syntax of the working language, its operational semantics, and the typing rules

are given in Section 2.• Determining if a handler respects an effect theory is in general undecidable (Plotkin

& Pretnar, 2013), so there is no canonical way of defining such a judgement. There-

fore, the typing rules are given parametric to a reasoning logic, and in Section 3, we

present some of the more interesting choices.• Since the definition of typing judgements is intertwined with a reasoning logic, we

must be careful when defining the denotation of types and terms. Thus, in Section 4,

we first introduce a set-based denotational semantics that disregards effect theories

and prove the expected meta-theoretic properties.
⇤ This material is based upon work supported by the Air Force Office of Scientific Research under

award number FA9550-17-1-0326.

theory
 eqn_a

ssoc f
or {Ch

oice}
is

 { .
; z1 :

 unit
-> *,

z2 : u
nit ->

 *, z3
 : uni

t -> *
 |-

 Ch
oice((

); b.

if b t

hen z1
 ()

else C

hoice(
(); b'

. if b
' then

 z2 ()
 else

z3 ())
)

 ~

 Ch
oice((

); b.

if b t

hen Ch
oice((

); b'.
 if b'

 then
z1 ()

else z
2 ())

else z

3 ())
 }

let to
_list

: int!
eqn_as

soc =>
 int l

ist =
handle

r

 | ef
fect C

hoice
_ k ->

 k tru
e @ k

false

 | va
l x ->

 [x]

HANDLERS

HANDLERS

The simplest way of efficiently executing Eff was through OCaml

Eff efficient
execution

The simplest way of efficiently executing Eff was through OCaml

Eff efficient
execution

The simplest way of efficiently executing Eff was through OCaml

Eff

OCaml

efficient
execution

The simplest way of efficiently executing Eff was through OCaml

Eff

OCaml

efficient
execution

Since OCaml did not have handlers, we did monadic embedding

Since OCaml did not have handlers, we did monadic embedding

type ‘a comp =
 | Return of ‘a
 | Get of unit * (int -> ‘a comp)
 | Set of int * (unit -> ‘a comp)

type (‘a, ‘b) handler = { (* handler clauses *) }

free monad

Since OCaml did not have handlers, we did monadic embedding

val return : ‘a -> ‘a comp
val (>>=) : ‘a comp -> (‘a -> ‘b comp) -> ‘b comp
val map : (‘a -> ‘b) -> ‘a comp -> ‘b comp

val get : unit -> int comp
val set : int -> unit comp

val handle : (‘a, ‘b) handler -> ‘a comp -> ‘b comp

operations

type ‘a comp =
 | Return of ‘a
 | Get of unit * (int -> ‘a comp)
 | Set of int * (unit -> ‘a comp)

type (‘a, ‘b) handler = { (* handler clauses *) }

free monad

Since OCaml did not have handlers, we did monadic embedding

val return : ‘a -> ‘a comp
val (>>=) : ‘a comp -> (‘a -> ‘b comp) -> ‘b comp
val map : (‘a -> ‘b) -> ‘a comp -> ‘b comp

val get : unit -> int comp
val set : int -> unit comp

val handle : (‘a, ‘b) handler -> ‘a comp -> ‘b comp

operations

type ‘a comp =
 | Return of ‘a
 | Get of unit * (int -> ‘a comp)
 | Set of int * (unit -> ‘a comp)

type (‘a, ‘b) handler = { (* handler clauses *) }

free monad

First component was a purity-aware translation

let y = perform Get in
perform (Set (y + 1));
loop (n - 1)

source Eff

First component was a purity-aware translation

let y = perform Get in
perform (Set (y + 1));
loop (n - 1)

source Eff

get () >>= fun y ->
set (y+1) >>= fun _ ->
loop (n - 1)

desired OCaml

First component was a purity-aware translation

let y = perform Get in
perform (Set (y + 1));
loop (n - 1)

source Eff
get () >>= fun y ->
(+) y >>= fun f ->
f 1 >>= z ->
set y >>= fun _ ->
(-) n >>= fun g ->
g 1 >>= m
loop m

generated OCaml

get () >>= fun y ->
set (y+1) >>= fun _ ->
loop (n - 1)

desired OCaml

First component was a purity-aware translation

let y = perform Get in
perform (Set (y + 1));
loop (n - 1)

source Eff
get () >>= fun y ->
(+) y >>= fun f ->
f 1 >>= z ->
set y >>= fun _ ->
(-) n >>= fun g ->
g 1 >>= m
loop m

generated OCaml

get () >>= fun y ->
set (y+1) >>= fun _ ->
loop (n - 1)

desired OCaml

First component was a purity-aware translation

let y = perform Get in
perform (Set (y + 1));
loop (n - 1)

source Eff

get () >>= fun y ->
let f = (+) y in
let z = f 1 in
set y >>= fun _ ->
let g = (-) n in
let m = g 1 in
loop m

purity-aware translation

get () >>= fun y ->
(+) y >>= fun f ->
f 1 >>= z ->
set y >>= fun _ ->
(-) n >>= fun g ->
g 1 >>= m
loop m

generated OCaml

get () >>= fun y ->
set (y+1) >>= fun _ ->
loop (n - 1)

desired OCaml

First component was a purity-aware translation

let y = perform Get in
perform (Set (y + 1));
loop (n - 1)

source Eff

get () >>= fun y ->
let f = (+) y in
let z = f 1 in
set y >>= fun _ ->
let g = (-) n in
let m = g 1 in
loop m

purity-aware translation

get () >>= fun y ->
(+) y >>= fun f ->
f 1 >>= z ->
set y >>= fun _ ->
(-) n >>= fun g ->
g 1 >>= m
loop m

generated OCaml

get () >>= fun y ->
set (y+1) >>= fun _ ->
loop (n - 1)

desired OCaml

𝒞(σ!φ) = {𝒞(σ) φ = ∅
𝒞(σ) 𝚌𝚘𝚖𝚙 φ ≠ ∅

Second component was inlining handler definitions

Second component was inlining handler definitions

let rec loop n =
 if n = 0 then () else
 let y = perform Get () in
 perform (Set (y + 1));
 loop (n - 1)

stateful function

Second component was inlining handler definitions

let rec loop n =
 if n = 0 then () else
 let y = perform Get () in
 perform (Set (y + 1));
 loop (n - 1)

stateful function

let state_handler = handler
 | effect (Get ()) k -> (fun s -> k s s)
 | effect (Set s') k -> (fun _ -> k () s')
 | _ -> (fun s -> s)

handler for state

Handlers get pushed inside other constructs

with state_handler handle
 if n = 0 then () else
 let y = perform Get () in
 perform (Set (y + 1));
 loop (n - 1)

Handlers get pushed inside other constructs

with state_handler handle
 if n = 0 then () else
 let y = perform Get () in
 perform (Set (y + 1));
 loop (n - 1)

Handlers get pushed inside other constructs

with state_handler handle
 if n = 0 then () else
 let y = perform Get () in
 perform (Set (y + 1));
 loop (n - 1)

if n = 0 then
 with state_handler handle ()
else
 with state_handler handle
 let y = perform Get () in
 perform (Set (y + 1));
 loop (n - 1)

We unfold the handler once encountering a value or operation

if n = 0 then
 with state_handler handle ()
else
 with state_handler handle
 let y = perform Get () in
 perform (Set (y + 1));
 loop (n - 1)

We unfold the handler once encountering a value or operation

if n = 0 then
 with state_handler handle ()
else
 with state_handler handle
 let y = perform Get () in
 perform (Set (y + 1));
 loop (n - 1)

We unfold the handler once encountering a value or operation

if n = 0 then
 with state_handler handle ()
else
 with state_handler handle
 let y = perform Get () in
 perform (Set (y + 1));
 loop (n - 1)

if n = 0 then (fun s -> s) else
 fun s -> with state_handler handle
 loop (n - 1)
) (s + 1)

We unfold the handler once encountering a value or operation

if n = 0 then
 with state_handler handle ()
else
 with state_handler handle
 let y = perform Get () in
 perform (Set (y + 1));
 loop (n - 1)

if n = 0 then (fun s -> s) else
 fun s -> with state_handler handle
 loop (n - 1)
) (s + 1)

For functions, we use function specialisation & fusion

For functions, we use function specialisation & fusion

let rec loop’ n =
 with state_handler handle loop n

For functions, we use function specialisation & fusion

let rec loop’ n =
 with state_handler handle loop n

let rec loop’ n =
 with state_handler handle (* …loop body… *)

For functions, we use function specialisation & fusion

let rec loop’ n =
 with state_handler handle loop n

let rec loop’ n =
 with state_handler handle (* …loop body… *)

let rec loop’ n s =
 if n = 0 then s else
 (with state_handler handle loop (n - 1))
 (s + 1)

For functions, we use function specialisation & fusion

let rec loop’ n =
 with state_handler handle loop n

let rec loop’ n =
 with state_handler handle (* …loop body… *)

let rec loop’ n s =
 if n = 0 then s else
 (with state_handler handle loop (n - 1))
 (s + 1)

For functions, we use function specialisation & fusion

let rec loop’ n =
 with state_handler handle loop n

let rec loop’ n =
 with state_handler handle (* …loop body… *)

let rec loop’ n s =
 if n = 0 then s else
 (with state_handler handle loop (n - 1))
 (s + 1)

let rec loop’ n s =
 if n = 0 then s else loop’ (n - 1) (s + 1)

Purity-aware translation proved tricky due to implicit typing information

Eff

OCaml

Purity-aware translation proved tricky due to implicit typing information

Eff

OCaml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

E�icient Compilation of Algebraic E�ects and Handlers

21

Pure

Latent

Incr

State

0

50

100 100

100

100

100

78.5

74.3

56

34

35.4

37.4 62.3 85
2.4

2

5.5

3.3

2.3

1.9

3.8

2.3

Loop program variations

Pe
rc
en
ta
ge

Basic
Opt
Pure

PureOpt
Native

Fig. 14. Relative run-times of Loops examplelet rec (>>=) (c : �a computation) (f : �a -> �b computation) : �b computation =

match c with| Return x -> f x
| Call (op , x, k) -> Call (op , x, (fun y -> (k y) >>= f))

8 EVALUATIONWe evaluate the e�ectiveness of our optimizing compiler for E�� on a number of benchmarks. First, we compare our

di�erent compilation schemes with hand-wri�en OC��� code. Then, we measure our compiler’s performance against

other OC���-based implementations of algebraic e�ects and handlers. All benchmarks were run on a MacBook Pro

with an 2.5 GHz Intel Core I7 processor and 16 GB 1600 MHz DDR3 RAM running Mac OS 10.12.3.

8.1 E�� versus OC���Our first evaluation, in Fig. 14, considers four di�erent variations on the looping program from Section 2: 1) Pure

is version without side-e�ects, 2) Latent contains an operation that is never called during the execution of the

benchmark, 3) Incr calls a single increment operation that increments an implicit state, 4) is the version of Section 2

that increments the implicit state with the Get and Put operations. We compile these programs in four di�erent ways:

1) basic compilation mode without any optimization (Basic), 2) purity-aware compilation (Pure), 3) source-to-source

optimizations (Opt), 4) the combination of the previous two. Finally, we compare these di�erent versions against

hand-wri�en (Native) OC��� code: 1) a pure loop, 2) a latent OC��� exception, 3) a reference cell increment, and 4) a

reference cell read followed by a write. The programs were compiled with version 4.02.2 of the OC��� compiler.

Figure 14 shows the time relative to the Basic version for running each of the 20 programs for 10,000 iterations. The

results show a substantial gap between the basic compilation scheme and the hand-wri�en OC���, in the range of

25⇥–50⇥. The source-to-source transformations and purity-aware code generation each have individually varying

success in reducing the gap to a smaller, but still significant level. It is only when the two optimizations are combined

that we obtain performance that is competitive with the hand-wri�en versions (1⇥-1.5⇥). In particular, the combined

optimizations succeed in eliminating all trace of the handlers and free monad from the generated OC��� code.Manuscript submi�ed to ACM

Purity-aware translation proved tricky due to implicit typing information

Eff

OCaml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

E�icient Compilation of Algebraic E�ects and Handlers

21

Pure

Latent

Incr

State

0

50

100 100

100

100

100

78.5

74.3

56

34

35.4

37.4 62.3 85
2.4

2

5.5

3.3

2.3

1.9

3.8

2.3

Loop program variations

Pe
rc
en
ta
ge

Basic
Opt
Pure

PureOpt
Native

Fig. 14. Relative run-times of Loops examplelet rec (>>=) (c : �a computation) (f : �a -> �b computation) : �b computation =

match c with| Return x -> f x
| Call (op , x, k) -> Call (op , x, (fun y -> (k y) >>= f))

8 EVALUATIONWe evaluate the e�ectiveness of our optimizing compiler for E�� on a number of benchmarks. First, we compare our

di�erent compilation schemes with hand-wri�en OC��� code. Then, we measure our compiler’s performance against

other OC���-based implementations of algebraic e�ects and handlers. All benchmarks were run on a MacBook Pro

with an 2.5 GHz Intel Core I7 processor and 16 GB 1600 MHz DDR3 RAM running Mac OS 10.12.3.

8.1 E�� versus OC���Our first evaluation, in Fig. 14, considers four di�erent variations on the looping program from Section 2: 1) Pure

is version without side-e�ects, 2) Latent contains an operation that is never called during the execution of the

benchmark, 3) Incr calls a single increment operation that increments an implicit state, 4) is the version of Section 2

that increments the implicit state with the Get and Put operations. We compile these programs in four di�erent ways:

1) basic compilation mode without any optimization (Basic), 2) purity-aware compilation (Pure), 3) source-to-source

optimizations (Opt), 4) the combination of the previous two. Finally, we compare these di�erent versions against

hand-wri�en (Native) OC��� code: 1) a pure loop, 2) a latent OC��� exception, 3) a reference cell increment, and 4) a

reference cell read followed by a write. The programs were compiled with version 4.02.2 of the OC��� compiler.

Figure 14 shows the time relative to the Basic version for running each of the 20 programs for 10,000 iterations. The

results show a substantial gap between the basic compilation scheme and the hand-wri�en OC���, in the range of

25⇥–50⇥. The source-to-source transformations and purity-aware code generation each have individually varying

success in reducing the gap to a smaller, but still significant level. It is only when the two optimizations are combined

that we obtain performance that is competitive with the hand-wri�en versions (1⇥-1.5⇥). In particular, the combined

optimizations succeed in eliminating all trace of the handlers and free monad from the generated OC��� code.Manuscript submi�ed to ACM

Schrijvers
et al.

submitted
to ICFP

2017

Purity-aware translation proved tricky due to implicit typing information

Eff

OCaml

One thing removed for simplicity were effect instances

Eff

OCaml

One thing removed for simplicity were effect instances

Eff

OCaml

type 'a ref = effect operation get: unit -> 'a operation set: 'a -> unitend

let state r x = handler | r#get () k -> (fun s -> k s s)
 | r#set s' k -> (fun s -> k () s')
 | val y -> (fun s -> (y, s))
 | finally f -> f x

One thing removed for simplicity were effect instances

Eff

OCaml

type 'a ref = effect operation get: unit -> 'a operation set: 'a -> unitend

let state r x = handler | r#get () k -> (fun s -> k s s)
 | r#set s' k -> (fun s -> k () s')
 | val y -> (fun s -> (y, s))
 | finally f -> f x

operation get: unit -> intoperation set: int -> unit
let state r x = handler | #get () k -> (fun s -> k s s)
 | #set s' k -> (fun s -> k () s')
 | val y -> (fun s -> (y, s))
 | finally f -> f x

The main step was adding coercions as witnesses of subtyping

Eff

OCaml

The main step was adding coercions as witnesses of subtyping

Eff

OCaml

ExEff

Schrijvers
et al.

presented
at ESOP

2018

The main step was adding coercions as witnesses of subtyping

Eff

OCaml

ExEff

NoEff

Schrijvers
et al.

presented
at ESOP

2018

The main step was adding coercions as witnesses of subtyping

Eff

OCaml

ExEff

NoEff

Schrijvers
et al.

presented
at ESOP

2018
Schrijvers

et al.

published
in JFP
2020

The main step was adding coercions as witnesses of subtyping

Eff

OCaml

ExEff

NoEff

Schrijvers
et al.

presented
at ESOP

2018
Schrijvers

et al.

published
in JFP
2020

Schrijvers
et al.

presented
at OOPSLA

2021

The syntax of types and well-formedness rules for coercions

σ ::= b ∣ α ∣ σ → τ τ ::= σ!φ
types

coercions

Ξ ⊢ ⟨σ⟩ : (σ <: σ)
ω : (σ <: σ′) ∈ Ξ
Ξ ⊢ ω : (σ <: σ′)

Ξ ⊢ ωv : (σ′ <: σ) Ξ ⊢ ωc : (τ <: τ′)
Ξ ⊢ ωv → ωc : ((σ → τ) <: (σ → τ′))

Ξ ⊢ ωv : (σ <: σ′) Ξ ⊢ ϖ : (φ <: φ′)
Ξ ⊢ ωv!ϖ : (σ!φ <: σ′ !φ′)

When compiling to OCaml, coercions are mapped into functions

𝒞(⟨σ⟩) = 𝚒𝚍
𝒞(ωi) = 𝚠_𝚒

𝒞(ωv → ωc) = 𝚏𝚞𝚗 f ↦ x ↦ (f(x ▹ 𝒞(ωv)) ▹ 𝒞(ωc)

𝒞(ωv!ϖ) =
𝒞(ωv) ϖ : ∅ ⊆ ∅
𝚛𝚎𝚝𝚞𝚛𝚗 ∘ 𝒞(ωv) ϖ : ∅ ⊆ φ
𝚖𝚊𝚙 𝒞(ωv) ϖ : φ ⊆ φ′

When compiling to OCaml, coercions are mapped into functions

𝒞(⟨σ⟩) = 𝚒𝚍
𝒞(ωi) = 𝚠_𝚒

𝒞(ωv → ωc) = 𝚏𝚞𝚗 f ↦ x ↦ (f(x ▹ 𝒞(ωv)) ▹ 𝒞(ωc)

𝒞(ωv!ϖ) =
𝒞(ωv) ϖ : ∅ ⊆ ∅
𝚛𝚎𝚝𝚞𝚛𝚗 ∘ 𝒞(ωv) ϖ : ∅ ⊆ φ
𝚖𝚊𝚙 𝒞(ωv) ϖ : φ ⊆ φ′

Translating a polymorphic function incurs additional parameters

Translating a polymorphic function incurs additional parameters

let apply_zero f = f 0 in
apply_zero cos

Eff source

Translating a polymorphic function incurs additional parameters

let apply_zero f = f 0 in
apply_zero cos

Eff source

𝚕𝚎𝚝 applyZeroα,β,(ω:𝚒𝚗𝚝<:α) (f : α → β) = f(0 ▹ ω) 𝚒𝚗
applyZero𝚏𝚕𝚘𝚊𝚝,𝚏𝚕𝚘𝚊𝚝,𝚒𝚗𝚝𝟸𝚏𝚕𝚘𝚊𝚝𝚌𝚘𝚜

Internal representation

Translating a polymorphic function incurs additional parameters

let apply_zero f = f 0 in
apply_zero cos

Eff source

𝚕𝚎𝚝 applyZeroα,β,(ω:𝚒𝚗𝚝<:α) (f : α → β) = f(0 ▹ ω) 𝚒𝚗
applyZero𝚏𝚕𝚘𝚊𝚝,𝚏𝚕𝚘𝚊𝚝,𝚒𝚗𝚝𝟸𝚏𝚕𝚘𝚊𝚝𝚌𝚘𝚜

Internal representation

let apply_zero w f = f (w 0) in
apply_zero float_of_int cos

OCaml translation

Translating a polymorphic function incurs additional parameters

let apply_zero f = f 0 in
apply_zero cos

Eff source

𝚕𝚎𝚝 applyZeroα,β,(ω:𝚒𝚗𝚝<:α) (f : α → β) = f(0 ▹ ω) 𝚒𝚗
applyZero𝚏𝚕𝚘𝚊𝚝,𝚏𝚕𝚘𝚊𝚝,𝚒𝚗𝚝𝟸𝚏𝚕𝚘𝚊𝚝𝚌𝚘𝚜

Internal representation

let apply_zero w f = f (w 0) in
apply_zero float_of_int cos

OCaml translation

Translating a polymorphic function incurs additional parameters

quicksort ~200 coercion parameters
Eff standard library ~450 coercion parameters

let apply_zero f = f 0 in
apply_zero cos

Eff source

𝚕𝚎𝚝 applyZeroα,β,(ω:𝚒𝚗𝚝<:α) (f : α → β) = f(0 ▹ ω) 𝚒𝚗
applyZero𝚏𝚕𝚘𝚊𝚝,𝚏𝚕𝚘𝚊𝚝,𝚒𝚗𝚝𝟸𝚏𝚕𝚘𝚊𝚝𝚌𝚘𝚜

Internal representation

let apply_zero w f = f (w 0) in
apply_zero float_of_int cos

OCaml translation

Translating a polymorphic function incurs additional parameters

quicksort ~200 coercion parameters
Eff standard library ~450 coercion parameters

let apply_zero f = f 0 in
apply_zero cos

Eff source

𝚕𝚎𝚝 applyZeroα,β,(ω:𝚒𝚗𝚝<:α) (f : α → β) = f(0 ▹ ω) 𝚒𝚗
applyZero𝚏𝚕𝚘𝚊𝚝,𝚏𝚕𝚘𝚊𝚝,𝚒𝚗𝚝𝟸𝚏𝚕𝚘𝚊𝚝𝚌𝚘𝚜

Internal representation

let apply_zero w f = f (w 0) in
apply_zero float_of_int cos

OCaml translation

Coercions can be replaced without impacting the semantics

OPTIMISING SUBTYPING COERCIONS IN
A POLYMORPHIC CALCULUS WITH EFFECTS

FILIP KOPRIVEC a,b AND MATIJA PRETNAR a,baUniversity of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, SI-1000 Ljubljana,

Slovenia

b Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia

e-mail address: filip.koprivec@fmf.uni-lj.sie-mail address: matija.pretnar@fmf.uni-lj.si

Abstract. Algebraic effects and handlers are becoming increasingly popular as a way to

structure and reason about effectful computations. However, the performance of effectful

programs is often a concern, with multiple different optimization techniques being proposed.

This paper focuses on existing compilation scheme using type-and-effect directed op-

timizations, by providing optimizations for polymorphic version of type-and-effect based

intermediate language by decreasing the amount of explicit coercions in the final program.

We present a simple polymorphic type system and calculus with support for effects together

with requirements for the language and the type system needed by the optimizations to be

correct with respect to subtyping. We identify a set of independent simplification primitives,

that are safe from type perspective and can be used to simplify the program. Denotational

semantics for the language is provided, together with the requirements for the optimization

phases to be correct with the respect to the semantics and proof that previously mentioned

simplification primitives are correct with respect to the semantics.
Finally, we provide an implementation of the constraint simplification algorithm in

Eff language and evaluate the performance of the optimizations on the standard library,

that contains a large number of polymorphic functions and is a good representative of the

real-world code. The results show that the optimizations are able to greatly decrease the

amount of explicit coercions and monadic artifacts in the final program.
Write abstract.

write thanks

write key-
words

Before
sumbitting,
go through
LMCS check-
list

Go through
all instances
of clear/ob-
vious/triv-
ial/simple/s-
traightfor-
ward/natu-
ral/...

IntroductionRecent years have seen an increase in the number of programming languages that support

algebraic effect handlers [PP03, PP13]. With a widespread usage, the need for performance

is becoming ever more important. And there are two main ways for achieving it: . an efficient

check if the
references
are correct

runtime [DWS+15, SDW+21], or an optimising compiler [SBO20, XL21, KKPS21], which

we focus on in this paper.
Key words and phrases: Computational effects, Optimizing compilation, Polymorphic compilation, Deno-

tational semantics.This material is based upon work supported by the Air Force Office of Scientific Research under awards

number FA9550-17-1-0326 and FA9550-21-1-0024.

Preprint submitted toLogical Methods in Computer Science

© F. Koprivec and M. PretnarCC� Creative Commons

Coercions can be replaced without impacting the semantics

OPTIMISING SUBTYPING COERCIONS IN
A POLYMORPHIC CALCULUS WITH EFFECTS

FILIP KOPRIVEC a,b AND MATIJA PRETNAR a,baUniversity of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, SI-1000 Ljubljana,

Slovenia

b Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia

e-mail address: filip.koprivec@fmf.uni-lj.sie-mail address: matija.pretnar@fmf.uni-lj.si

Abstract. Algebraic effects and handlers are becoming increasingly popular as a way to

structure and reason about effectful computations. However, the performance of effectful

programs is often a concern, with multiple different optimization techniques being proposed.

This paper focuses on existing compilation scheme using type-and-effect directed op-

timizations, by providing optimizations for polymorphic version of type-and-effect based

intermediate language by decreasing the amount of explicit coercions in the final program.

We present a simple polymorphic type system and calculus with support for effects together

with requirements for the language and the type system needed by the optimizations to be

correct with respect to subtyping. We identify a set of independent simplification primitives,

that are safe from type perspective and can be used to simplify the program. Denotational

semantics for the language is provided, together with the requirements for the optimization

phases to be correct with the respect to the semantics and proof that previously mentioned

simplification primitives are correct with respect to the semantics.
Finally, we provide an implementation of the constraint simplification algorithm in

Eff language and evaluate the performance of the optimizations on the standard library,

that contains a large number of polymorphic functions and is a good representative of the

real-world code. The results show that the optimizations are able to greatly decrease the

amount of explicit coercions and monadic artifacts in the final program.
Write abstract.

write thanks

write key-
words

Before
sumbitting,
go through
LMCS check-
list

Go through
all instances
of clear/ob-
vious/triv-
ial/simple/s-
traightfor-
ward/natu-
ral/...

IntroductionRecent years have seen an increase in the number of programming languages that support

algebraic effect handlers [PP03, PP13]. With a widespread usage, the need for performance

is becoming ever more important. And there are two main ways for achieving it: . an efficient

check if the
references
are correct

runtime [DWS+15, SDW+21], or an optimising compiler [SBO20, XL21, KKPS21], which

we focus on in this paper.
Key words and phrases: Computational effects, Optimizing compilation, Polymorphic compilation, Deno-

tational semantics.This material is based upon work supported by the Air Force Office of Scientific Research under awards

number FA9550-17-1-0326 and FA9550-21-1-0024.

Preprint submitted toLogical Methods in Computer Science

© F. Koprivec and M. PretnarCC� Creative Commons

28
F. KOPRIVEC AND M. PRETNAR

Theorem 5.3. Take instantiations s̀ubst
⌘1 : ⌅ and s̀ubst

⌘2 : ⌅ together with a coercion

family ` Y : ⌘1 F ⌘2.

Then, for any ⌅;� ` v : A such that fp(A) [fp(�) ✓ F , we have

J⌘1(�) ` ⌘1(v) : ⌘1(A)K = JY (A)K � J⌘2(�) ` ⌘2(v) : ⌘2(A)K � JY (�)K

Similarly, for any ⌅;� ` c : C such that fp(C) [fp(�) ✓ F , we have

J⌘1(�) ` ⌘1(c) : ⌘1(C)K = JY (C)K � J⌘2(�) ` ⌘2(c) : ⌘2(C)K � JY (�)K

where Y (�) is defined component-wise as:

Y (x1 : A1, . . . , xn : An) := Y (A1)⇥ · · ·⇥ Y (An)

Proof. Let us consider only the case for values, as the one for computations proceeds

analogously. The proof is nicely summed up with the commutative diagram in the Figure 12,

where the top and bottom square commute due to the definition of monomorphic semantics,

the middle square commutes because the skeletal semantics is identical, and the side triangles

commute because Y produces well-typed coercions, which commute with injections into

skeletons. We conclude by noticing that conclusion follows from the fact that ◆⌘1(A) is

monomorphism and can be cancelled from the left.

J⌘1(�)K J⌘1(A)K

L⌘1(�)M L⌘1(A)M

L⌘2(�)M L⌘2(A)M

J⌘2(�)K J⌘2(A)K

J⌘1(v)K

◆⌘1(�)

JY
(�

)K

◆⌘1(A)

L⌘1(v)M

L⌘2(v)M

◆⌘2(�)

J⌘2(v)K

◆⌘2(A)

JY
(A

)K

Figure 12. Preservation of denotational semantics

From this, it immediately follows that complete phases preserve the semantics up to a

coercion. In particular, every instantiation of a polymorphic value v, the scenario we are

interested in, can be replaced with a suitably coerced instantiation of a simplified value �(v).

Corollary 5.4. Let ⌅; · ` v : A be a well-typed closed value, � a complete phase such that

�(⌅, fp(A)) = (⌅0,�). Then, for any instantiation s̀ubst
⌘ : ⌅, there exists an instantiation

s̀ubst
⌘0 : ⌅0 and a coercion ` �v : ⌘

0(�(A)) ⌘(A) such that

J ` ⌘(v) : ⌘(A)K = J ` ⌘0(�(v)) B �v : ⌘(A)K

Proof. Since � is complete, we get ` Y : (⌘0 � �) ⌘, and ` Y (A) : ⌘0(�(A)) ⌘(A)

is the required coercion �v. From Theorem 5.3, we get J ` ⌘(v) : ⌘(A)K = JY (A)K �

J ` ⌘0(�(v)) : ⌘
0(�(A))K = J ` ⌘0(�(v)) B Y (A) : ⌘(A)K with the second equation being ex-

actly the one as in the proof of Theorem 5.2.

Coercions can be replaced without impacting the semantics

OPTIMISING SUBTYPING COERCIONS IN
A POLYMORPHIC CALCULUS WITH EFFECTS

FILIP KOPRIVEC a,b AND MATIJA PRETNAR a,baUniversity of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, SI-1000 Ljubljana,

Slovenia

b Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia

e-mail address: filip.koprivec@fmf.uni-lj.sie-mail address: matija.pretnar@fmf.uni-lj.si

Abstract. Algebraic effects and handlers are becoming increasingly popular as a way to

structure and reason about effectful computations. However, the performance of effectful

programs is often a concern, with multiple different optimization techniques being proposed.

This paper focuses on existing compilation scheme using type-and-effect directed op-

timizations, by providing optimizations for polymorphic version of type-and-effect based

intermediate language by decreasing the amount of explicit coercions in the final program.

We present a simple polymorphic type system and calculus with support for effects together

with requirements for the language and the type system needed by the optimizations to be

correct with respect to subtyping. We identify a set of independent simplification primitives,

that are safe from type perspective and can be used to simplify the program. Denotational

semantics for the language is provided, together with the requirements for the optimization

phases to be correct with the respect to the semantics and proof that previously mentioned

simplification primitives are correct with respect to the semantics.
Finally, we provide an implementation of the constraint simplification algorithm in

Eff language and evaluate the performance of the optimizations on the standard library,

that contains a large number of polymorphic functions and is a good representative of the

real-world code. The results show that the optimizations are able to greatly decrease the

amount of explicit coercions and monadic artifacts in the final program.
Write abstract.

write thanks

write key-
words

Before
sumbitting,
go through
LMCS check-
list

Go through
all instances
of clear/ob-
vious/triv-
ial/simple/s-
traightfor-
ward/natu-
ral/...

IntroductionRecent years have seen an increase in the number of programming languages that support

algebraic effect handlers [PP03, PP13]. With a widespread usage, the need for performance

is becoming ever more important. And there are two main ways for achieving it: . an efficient

check if the
references
are correct

runtime [DWS+15, SDW+21], or an optimising compiler [SBO20, XL21, KKPS21], which

we focus on in this paper.
Key words and phrases: Computational effects, Optimizing compilation, Polymorphic compilation, Deno-

tational semantics.This material is based upon work supported by the Air Force Office of Scientific Research under awards

number FA9550-17-1-0326 and FA9550-21-1-0024.

Preprint submitted toLogical Methods in Computer Science

© F. Koprivec and M. PretnarCC� Creative Commons

28
F. KOPRIVEC AND M. PRETNAR

Theorem 5.3. Take instantiations s̀ubst
⌘1 : ⌅ and s̀ubst

⌘2 : ⌅ together with a coercion

family ` Y : ⌘1 F ⌘2.

Then, for any ⌅;� ` v : A such that fp(A) [fp(�) ✓ F , we have

J⌘1(�) ` ⌘1(v) : ⌘1(A)K = JY (A)K � J⌘2(�) ` ⌘2(v) : ⌘2(A)K � JY (�)K

Similarly, for any ⌅;� ` c : C such that fp(C) [fp(�) ✓ F , we have

J⌘1(�) ` ⌘1(c) : ⌘1(C)K = JY (C)K � J⌘2(�) ` ⌘2(c) : ⌘2(C)K � JY (�)K

where Y (�) is defined component-wise as:

Y (x1 : A1, . . . , xn : An) := Y (A1)⇥ · · ·⇥ Y (An)

Proof. Let us consider only the case for values, as the one for computations proceeds

analogously. The proof is nicely summed up with the commutative diagram in the Figure 12,

where the top and bottom square commute due to the definition of monomorphic semantics,

the middle square commutes because the skeletal semantics is identical, and the side triangles

commute because Y produces well-typed coercions, which commute with injections into

skeletons. We conclude by noticing that conclusion follows from the fact that ◆⌘1(A) is

monomorphism and can be cancelled from the left.

J⌘1(�)K J⌘1(A)K

L⌘1(�)M L⌘1(A)M

L⌘2(�)M L⌘2(A)M

J⌘2(�)K J⌘2(A)K

J⌘1(v)K

◆⌘1(�)

JY
(�

)K

◆⌘1(A)

L⌘1(v)M

L⌘2(v)M

◆⌘2(�)

J⌘2(v)K

◆⌘2(A)

JY
(A

)K

Figure 12. Preservation of denotational semantics

From this, it immediately follows that complete phases preserve the semantics up to a

coercion. In particular, every instantiation of a polymorphic value v, the scenario we are

interested in, can be replaced with a suitably coerced instantiation of a simplified value �(v).

Corollary 5.4. Let ⌅; · ` v : A be a well-typed closed value, � a complete phase such that

�(⌅, fp(A)) = (⌅0,�). Then, for any instantiation s̀ubst
⌘ : ⌅, there exists an instantiation

s̀ubst
⌘0 : ⌅0 and a coercion ` �v : ⌘

0(�(A)) ⌘(A) such that

J ` ⌘(v) : ⌘(A)K = J ` ⌘0(�(v)) B �v : ⌘(A)K

Proof. Since � is complete, we get ` Y : (⌘0 � �) ⌘, and ` Y (A) : ⌘0(�(A)) ⌘(A)

is the required coercion �v. From Theorem 5.3, we get J ` ⌘(v) : ⌘(A)K = JY (A)K �

J ` ⌘0(�(v)) : ⌘
0(�(A))K = J ` ⌘0(�(v)) B Y (A) : ⌘(A)K with the second equation being ex-

actly the one as in the proof of Theorem 5.2.

Coercions can be replaced without impacting the semantics

OPTIMISING SUBTYPING COERCIONS IN
A POLYMORPHIC CALCULUS WITH EFFECTS

FILIP KOPRIVEC a,b AND MATIJA PRETNAR a,baUniversity of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, SI-1000 Ljubljana,

Slovenia

b Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia

e-mail address: filip.koprivec@fmf.uni-lj.sie-mail address: matija.pretnar@fmf.uni-lj.si

Abstract. Algebraic effects and handlers are becoming increasingly popular as a way to

structure and reason about effectful computations. However, the performance of effectful

programs is often a concern, with multiple different optimization techniques being proposed.

This paper focuses on existing compilation scheme using type-and-effect directed op-

timizations, by providing optimizations for polymorphic version of type-and-effect based

intermediate language by decreasing the amount of explicit coercions in the final program.

We present a simple polymorphic type system and calculus with support for effects together

with requirements for the language and the type system needed by the optimizations to be

correct with respect to subtyping. We identify a set of independent simplification primitives,

that are safe from type perspective and can be used to simplify the program. Denotational

semantics for the language is provided, together with the requirements for the optimization

phases to be correct with the respect to the semantics and proof that previously mentioned

simplification primitives are correct with respect to the semantics.
Finally, we provide an implementation of the constraint simplification algorithm in

Eff language and evaluate the performance of the optimizations on the standard library,

that contains a large number of polymorphic functions and is a good representative of the

real-world code. The results show that the optimizations are able to greatly decrease the

amount of explicit coercions and monadic artifacts in the final program.
Write abstract.

write thanks

write key-
words

Before
sumbitting,
go through
LMCS check-
list

Go through
all instances
of clear/ob-
vious/triv-
ial/simple/s-
traightfor-
ward/natu-
ral/...

IntroductionRecent years have seen an increase in the number of programming languages that support

algebraic effect handlers [PP03, PP13]. With a widespread usage, the need for performance

is becoming ever more important. And there are two main ways for achieving it: . an efficient

check if the
references
are correct

runtime [DWS+15, SDW+21], or an optimising compiler [SBO20, XL21, KKPS21], which

we focus on in this paper.
Key words and phrases: Computational effects, Optimizing compilation, Polymorphic compilation, Deno-

tational semantics.This material is based upon work supported by the Air Force Office of Scientific Research under awards

number FA9550-17-1-0326 and FA9550-21-1-0024.

Preprint submitted toLogical Methods in Computer Science

© F. Koprivec and M. PretnarCC� Creative Commons

28
F. KOPRIVEC AND M. PRETNAR

Theorem 5.3. Take instantiations s̀ubst
⌘1 : ⌅ and s̀ubst

⌘2 : ⌅ together with a coercion

family ` Y : ⌘1 F ⌘2.

Then, for any ⌅;� ` v : A such that fp(A) [fp(�) ✓ F , we have

J⌘1(�) ` ⌘1(v) : ⌘1(A)K = JY (A)K � J⌘2(�) ` ⌘2(v) : ⌘2(A)K � JY (�)K

Similarly, for any ⌅;� ` c : C such that fp(C) [fp(�) ✓ F , we have

J⌘1(�) ` ⌘1(c) : ⌘1(C)K = JY (C)K � J⌘2(�) ` ⌘2(c) : ⌘2(C)K � JY (�)K

where Y (�) is defined component-wise as:

Y (x1 : A1, . . . , xn : An) := Y (A1)⇥ · · ·⇥ Y (An)

Proof. Let us consider only the case for values, as the one for computations proceeds

analogously. The proof is nicely summed up with the commutative diagram in the Figure 12,

where the top and bottom square commute due to the definition of monomorphic semantics,

the middle square commutes because the skeletal semantics is identical, and the side triangles

commute because Y produces well-typed coercions, which commute with injections into

skeletons. We conclude by noticing that conclusion follows from the fact that ◆⌘1(A) is

monomorphism and can be cancelled from the left.

J⌘1(�)K J⌘1(A)K

L⌘1(�)M L⌘1(A)M

L⌘2(�)M L⌘2(A)M

J⌘2(�)K J⌘2(A)K

J⌘1(v)K

◆⌘1(�)

JY
(�

)K

◆⌘1(A)

L⌘1(v)M

L⌘2(v)M

◆⌘2(�)

J⌘2(v)K

◆⌘2(A)

JY
(A

)K

Figure 12. Preservation of denotational semantics

From this, it immediately follows that complete phases preserve the semantics up to a

coercion. In particular, every instantiation of a polymorphic value v, the scenario we are

interested in, can be replaced with a suitably coerced instantiation of a simplified value �(v).

Corollary 5.4. Let ⌅; · ` v : A be a well-typed closed value, � a complete phase such that

�(⌅, fp(A)) = (⌅0,�). Then, for any instantiation s̀ubst
⌘ : ⌅, there exists an instantiation

s̀ubst
⌘0 : ⌅0 and a coercion ` �v : ⌘

0(�(A)) ⌘(A) such that

J ` ⌘(v) : ⌘(A)K = J ` ⌘0(�(v)) B �v : ⌘(A)K

Proof. Since � is complete, we get ` Y : (⌘0 � �) ⌘, and ` Y (A) : ⌘0(�(A)) ⌘(A)

is the required coercion �v. From Theorem 5.3, we get J ` ⌘(v) : ⌘(A)K = JY (A)K �

J ` ⌘0(�(v)) : ⌘
0(�(A))K = J ` ⌘0(�(v)) B Y (A) : ⌘(A)K with the second equation being ex-

actly the one as in the proof of Theorem 5.2.

Constraints can be represented with directed graphs

α3

α5

α6

α4

α−
1

α8

α+
9

α7

α2

Constraints can be represented with directed graphs

α3

α5

α6

α4

α−
1

α8

α+
9

α7

α2

Constraints can be represented with directed graphs

α3

α5

α6

α4

α−
1

α8

α+
9

α7

α2

We can remove self loops and parallel edges to get a simple graph

α3

α5

α6

α4

α−
1

α8

α+
9

α7

α2

We can remove self loops and parallel edges to get a simple graph

α3

α5

α6

α4

α−
1

α8

α+
9

α7

α2

α3

We can collapse strongly connected components to get a DAG

α−
1

α8

α+
9

α7

α2

α3

We can collapse strongly connected components to get a DAG

α−
1

α8

α+
9

α7

α2

We can collapse bridges, if polarity allows

α3

α−
1

α8

α+
9

α7

We can collapse bridges, if polarity allows

α3

α−
1

α+
9

α7

We can collapse bridges, if polarity allows

α3

α−
1

α+
9

We can collapse bridges, if polarity allows

α−
1

α+
9

We can collapse bridges, if polarity allows

α±

Even though not canonical, we significantly simplify compiled Eff stdlib

before after

type coercions 447 0

dirt coercions 644 0

return 78 31

>>= 29 17

Even though not canonical, we significantly simplify compiled Eff stdlib

before after

type coercions 447 0

dirt coercions 644 0

return 78 31

>>= 29 17

HANDLERS

HANDLERS

Symmetry is present, but not used in programming/proving

Symmetry is present, but not used in programming/proving

Symmetry is present, but not used in programming/proving

w.l.o.g
.

QUESTIONS?

THANK YOU!

