PUTTING REASON
BACK INTO HANDLERS

PUTTING REASON
BACK INTO HANDLERS

PUTTING REASON
BACK INTO HANDLERS

g
(P
PUTTING REASON

BACK INTO HANDLERS

every computation

either

returns a value

or

calls an operation

let divide m n =
beep (); m / n
1n
let x = choose 42 12 1n
if x > 20 then
divide X 6

else
divide x (choose 0 4)

let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
if x > 20 then
divide X 6

else
divide x (choose 0@ 4)

Qchoose

let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
if x > 20 then
divide X 6

else
divide x (choose 0@ 4)

choose

beep

let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
if x > 20 then
divide X 6

else
divide x (choose 0@ 4)

choose

beep

let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
if x > 20 then
divide X 6

else
divide x (choose 0@ 4)

choose

beep choose

let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
if x > 20 then
divide X 6

else
divide x (choose 0@ 4)

choose

beep choose

7/ beep

let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
if x > 20 then
divide X 6

else
divide x (choose 0@ 4)

choose

beep choose

7/ beep

let divide m n =
beep (); m / n
in failQ
let x = choose 42 12 in
if x > 20 then
divide X 6

else
divide x (choose 0@ 4)

beep choose

let divide m n =
beep (); m / n
in fail@
let x = choose 42 12 in
if x > 20 then
divide X 6

else
divide x (choose 0@ 4)

beep choose

let divide m n =
beep ()5 m / n
in failQ 3
let x = choose 42 12 in
1f x > 20 then
divide x 6

else
divide x (choose 0@ 4)

beep choose

let divide m n =
beep ()5 m / n
in failQ 3
let x = choose 42 12 in
1f x > 20 then
divide x 6

else
divide x (choose 0@ 4)

choose

beep

let divide
beep ();

ir| faﬂ<:::> 3
let x = choose 42 12 in
if x > 20 then

divide X 6

else
divide x (choose 0@ 4)

= =
~~ D
o I |

signature

®: 2 beep: 1 fail: O

z2®z=2
21®290=29®21
(21®29)Bz3=21®(29®23)
beep(z1) ® beep(z2) = beep(z1 & 29)
fail() & fail() = fail()

®: 2 beep: 1 fail: O

z2®z=2
21®290=29®21
(21®29)Bz3=21®(29®23)
beep(z1) ® beep(z2) = beep(z1 & 29)
fail() & fail() = fail()

equational theory

Combining effects: sum and tensor

Martin Hyland,! Gordon Plotkin? and John Power? *

! Dept. of Mathematics, University of Cambridge, Cambridge CB3 O0WB, England.
email: M.Hyland@dpmms.cam.ac.uk
2 Laboratory for the Foundations of Computer Science, School of Informatics,
University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, Scotland.
email: gdp@inf.ed.ac.uk, ajp@inf.ed.ac.uk

Abstract. We seek a unified account of modularity for computational
effects. We begin by reformulating Moggi’s monadic paradigm for mod-
elling computational effects using the notion of enriched Lawvere theory,
together with its relationship with strong monads; this emphasises the
importance of the operations that produce the effects. Effects qua the-
ories are then combined by appropriate bifunctors on the category of
theories. We give a theory for the sum of computational effects, which
in particular yields Moggi’s exceptions monad transformer and an inter-
active input/output monad transformer. We further give a theory of the
commutative combination of effects, their tensor, which yields Moggi’s
side-effects monad transformer. Finally we give a theory of operation
transformers, for redefining operations when adding new effects; we de-
rive explicit forms for the operation transformers associated to the above
monad transformers.

1 Introduction

We seek a unified account of modularity for computational effects. More pre-
cisely, we seek a mathematical theory that supports the combining of computa-
tional effects such as exceptions, side-effects, interactive I/0 (i-e., input /output),
probabilistic nondeterminism, and nondeterminism. Ideally, we should like to de-
velop natural mathematical operations for the combination of effects, together
with associated relevant theory. There is more than one such operation: for ex-
ample, as we shall see, the combination of side-effects and nondeterminism is of
a different nature to the combination of I/0 and non-determinism, and, again,
one is sometimes interested in different ways to combine even the same pair of ef-
fects, for example, side-effects and exceptions. This paper is devoted to two such
ways of combining effects: their sum, which, as we shall see, may be employed
for combining both exceptions and interactive I/O with other effects; and their
commutative combination, their tensor, which, as we shall see, may be employed
for combining side-effects with other effects.

* This work has been done with the support of EPSRC grants GR/M56333 and
GR/S86372/01

signature

2 ::=1{opy:k1,...,0p, : kp}

T:=z|op(Ty,...,T,)
§:={T1=T4, ..., T, =T,}

equational theory

signature

2 ::=1{op; : k;};

T ::=z|op(T});
& :={T; =T}

equational theory

values

vi=x|()]|funx—c
c:=retv|dox—ciinco|vive|

op(c;);

computations

A:=unit|A—-C
C :=A'!{op;};

vi=x|()]|funx—c
c:=retv|dox—ciinco|vive|

op(c;);

value types

A:=unit|A—-C
C::=A!{op;};

computation types

value typing

x1:A1,...,x6, A, FUA

xX1:A1,...,xn:ApFc:C

computation typing

(x:A)el
I'Fx:A ['F():unit

[''x:AkFc:C

['Ffunx—c:A—-C

I'Fvi:A-C ['Fvo:A
['Fvive:C

['Fv:A
['Fretv:AI!'A

['Fe1:AlA I''x:AFco:B'!'A
[Fdox—ciinco:B!A

I'Fc;i:AlA]. op € A
I'Fop(c;); :A!TA

standard congruence equations

(T=T)e€ gglobal [Ci :Q]i
Tlcilzili =c T'leilz;];

X =ynit ()

(fun x—c)v =C clu/x]

funx—vx =p_.c v

dox —retvinc =C clu/x]

do x —op(c;); Inc
—C
op(do x — ¢; 1n ¢);

?
dox—cinretx=c

do x1 —c1 In (do x9 — ¢9 1In ¢)
?

do xo —(dox1 —cy1nco)inc

Vv :A. ¢p(ret v)

Vei :ALA. A\ lei) = Plop(c;)ilopen

Ve:ATA. ¢(c)

base case

Vv :A. ¢p(ret v)

Vei :ALA. A\ lei) = Plop(c;)ilopen

Ve:ATA. ¢(c)

Vv :A. ¢p(ret v)

operation cases

Vei :ALA. \ ¢plei) = Plop(ci)ilopen

Ve:ATA. ¢(c)

for 2 ={®: 2,beep: 1}, we have:
dox —cin (c1 dcy)
(dox<—cincl)€Ta(dox<—cincz)

do x — c1 1In beep(co)

beep(do x — c1 1n ¢9)

do x1 —c1 In (do x9 — ¢c9 1In ¢)

do xo —c9 In (do x1 <— c¢1 In ¢)

Algebraic Foundations for Effect-Dependent Optimisations

Ohad Kammar

Gordon D. Plotkin

Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh, Scotland

ohad.kammar@ed.ac.uk

Abstract

We present a general theory of Gifford-style type and effect anno-
tations, where effect annotations are sets of effects. Generality is
achieved by recourse to the theory of algebraic effects, a develop-
ment of Moggi’s monadic theory of computational effects that em-
phasises the operations causing the effects at hand and their equa-
tional theory. The key observation is that annotation effects can be
identified with operation symbols.

We develop an annotated version of Levy’s Call-by-Push-Value
language with a kind of computations for every effect set; it can
be thought of as a sequential, annotated intermediate language.
We develop a range of validated optimisations (i.e., equivalences),
generalising many existing ones and adding new ones. We classify
these optimisations as structural, algebraic, or abstract: structural
optimisations always hold; algebraic ones depend on the effect
theory at hand; and abstract ones depend on the global nature of
that theory (we give modularly-checkable sufficient conditions for
their validity).

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers; Optimization; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Logics of programs; F3.2 [Semantics of Pro-
gramming Languages]: Algebraic approaches to semantics; Deno-
tational semantics; Program analysis; F3.3 [Studies of Program
Constructs): Type structure

General Terms Languages, Theory.

Keywords Call-by-Push-Value, algebraic theory of effects, code
transformations, compiler optimisations, computational effects, de-
notational semantics, domain theory, inequational logic, relevant
and affine monads, sum and tensor, type and effect systems, uni-
versal algebra.

1. Introduction

In Gifford-style type and effect analysis [27], each term of a pro-
gramming language is assigned a type and an effect set. The type
describes the values the term may evaluate to; the effect set de-
scribes the effects the term may cause during its computation, such
as memory assignment, exception raising, or I/O.

For example, consider the following term M:

if true then x := 1 else x := deref(y)

[Copyright notice will appear here once "preprint’ option is removed.]

gdp@ed.ac.uk

It has unit type 1 as its sole purpose is to cause side effects;
it has effect set {update, lookup}, as it might cause memory
updates or look-ups. Type and effect systems commonly convey
this information via a type and effect judgement:

x:Loc,y:LocHM:1! {update, lookup}

The information gathered by such effect analyses can be used
to guarantee implementation correctness', to prove authenticity
properties [15], to aid resource management [44], or to optimise
code using transformations. We focus on the last of these. As an
example, purely functional code can be executed out of order:

X Mi; y+ Ma; N = ¥y Ma; x+ My; N

This reordering holds more generally, if the terms M; and M, have
non-interfering effects. Such transformations are commonly used in
optimising compilers. They are traditionally called optimisations,
even if neither side is always the more optimal.

In a sequence of papers, Benton et al. [4-8] prove soundness of
such optimisations for increasingly complex sets of effects. How-
ever, any change in the language requires a complete reformulation
of its semantics and so of the soundness proofs, even though the
essential reasons for the validity of the optimisations remain the
same. Thus, this approach is not robust, as small language changes
cause global theory changes.

A possible way to obtain robustness is to study effect systems
in general. One would hope for a modular approach, seeking to
isolate those parts of the theory that change under small language
changes, and then recombining them with the unchanging parts.
Such a theory may not only be important for compiler optimisations
in big, stable languages. It can also be used for effect-dependent
equational reasoning. This use may be especially helpful in the
case of small, domain-specific languages, as optimising compilers
are hardly ever designed for them and their diversity necessitates
proceeding modularly.

The only available general work on effect systems seems to
be that of Marino and Millstein [28]. They devise a methodology
to derive type and effect frameworks which they apply to a call-
by-value language with recursion and references; however, their
methodology does not account for effect-dependent optimisations.

Fortunately, Wadler and Thiemann [46, 47] had previously
made an important connection with the monadic approach to
computational effects. They translated Jjudgements of the form
'~ M: Alein aregion analysis calculus to judgements of the
form I = M" : T. A in a multi-monadic calculus. They gave the
latter calculus an operational semantics, and conjectured the exis-
tence of a corresponding general monadic denotational semantics
in which 7. would denote a monad corresponding to the effects in
€, and in which the partial order of effect sets and inclusions would

_
'E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links 0.5, 2009.
http://groups.inf.ed.ac.uk/links .

2011/11/16

LET ME
HANDLE THIS!

choose

beep

let divide m n =
beep ()5 m / n
in
let x = choose 42 12 in
if x > 20 then
divide X 6
else

divide x (choose @ 4)

choose

let goleft = handler
choose ki k2 = ki ()
in beep
with goleft handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
if x > 20 then
divide X 6

else
divide x (choose 0 4)

choose

let goRight = handler
choose k1 ko = k2 ()
in beep
with goRight handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in fw<:> 3
if x > 20 then
divide X 6
else

divide x (choose @ 4)

choose

let random = handler
choose ki k2 =
if randomFloat () > 0.5
then ki ()
else k> ()
in beep
with random handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
if x > 20 then
divide x 6

else
divide x (choose @ 4)

choose

let random = handler
choose ki k2 =
if randomFloat () > 0.5
then ki ()
else k> ()
in besp
with random handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in fw<:> 3
if x > 20 then
divide x 6

else
divide x (choose @ 4)

choose

choose

let random = handler
choose ki k2 =
if randomFloat () > 0.5
then ki ()
else k> ()
in besp
with random handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in fﬂ<:> 3
if x > 20 then
divide x 6

else
divide x (choose @ 4)

choose

choose

let random = handler
choose ki k2 =
if randomFloat () > 0.5
then ki ()
else k> ()
in besp
with random handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in fw<:> 3
if x > 20 then
divide x 6

else
divide x (choose @ 4)

choose

choose

let pickMax = handler
choose ki k2 =
o omax (ki () (ke ()
1N beep
with pickMax handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
if x > 20 then
divide x 6
else

divide x (choose 0 4)

choose

let pickMax = handler
choose ki k2 = .
max (ki ()) (k2 ())
fail = -inf
in beep
with pickMax handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
if x > 20 then
divide X 6
else

divide x (choose 0 4)

let tolList = handler
choose ki k2 =
ki () ++ ka2 ()
fail > [
heep k = k ()
ret x > [x]
in
with tolist handle
let divide m n =
beep (); m / n
1n
let x = choose 42 12 in
if x > 20 then
divide x 6

else
divide x (choose 0 4)

choose

>

o

.-- | handler A
.-+ | with v handle c

et x—c,|op;(k;); — cj| |
J

‘Q13Q2

values & computations

U ..
C ..

h ::

>

le.

.-- | handler A
.-+ | with v handle c

et x—c,|op;(k;); — cj]j}

‘Qljgz

v::=--- | handler
.-+ | with v handle c
b= {ret x—c,[op;(k;); — c;] }

o
|

value types

A= ‘Ql 3Q2
C:i=--

computation types

U ..
C ..

h ::

handlers

A::
C::

.-- | handler A
.-+ | with v handle c

et x—c,|op;(k;); — cj]j}

‘Q13Q2

value & computation typing

['Fv:A
I'Fec:C

I'Fh:A'A=C

handler typing

I'Fh:A'A=C

['Fhandlerh :A!A=C

'Fuv:C,=>C, ['Fe:C,
['=with v handle c: C,

[Lx:Akc:C

T,(k; :unit — C); Fc; :Q]j

p = {ret X c, 0P

with 4 handle (ret v)

c[v_/x]

with 7 handle (op;(c;);)
¢j[fun () — (with h handle c})/k;];

ki)i — C]\]‘f

(
pandler fret X c,\oP;
h =

ret (O

ret 0
= with goLeit handle (ret O @ret 1)

ret 0
= with goLeit handle (ret O @ret 1)
= with goLeft handle (ret 1 ¢ ret 0)

ret 0
= with goLeit handle (ret O @ret 1)
= with goLeft handle (ret 1 ¢ ret 0)

=ret 1

ret 0
= with goLeit handle (ret O @ret 1)
= with goLeft handle (ret 1 ¢ ret 0)

=ret 1

[Th _
=Tj |
(T
1:
Tg)Eéa
glob
al

h
1S
COrrTr
e
ct

h_ « © ° .
Zj_f]-un]_t Q

op (T = c;[(fun () — T1)k;);

N
p = ret X C,\Opj(kL)L i\

golLeft
goRight

0r=: o VXV
o X VYV XV
aonen ¥ X V V V
o) o v X X X
failz()fiifl‘?)ﬂ() ‘/ V / V V

random pickMax tolist toSet

signature

®: 2 beep: 1 fail: O

z2®z=2
21®290=29®21
(21®29)Bz3=21®(29®23)
beep(z1) ® beep(z2) = beep(z1 & 29)
fail() & fail() = fail()

equational theory

D :

2

beep: 1

signature

fail: O

equational theory

AN EFFECT SYSTEM FOR ALGEBRAIC EFFECTS AND HANDLERS

ANDREJ BAUER AND MATIJA PRETNAR

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
e-mail address: Andrej.Bauer@andrej.com

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
e-mail address: matija.pretnar@fmf.uni-lj.si

-

ABSTRACT. We present an effect system for core Eff, a simplified variant of Eff, which is
an ML-style programming language with first-class algebraic effects and handlers. We de-
fine an expressive effect system and prove safety of operational semantics with respect to it.
Then we give a domain-theoretic denotational semantics of core Eff, using Pitts’s theory
of minimal invariant relations, and prove it adequate. We use this fact to develop tools
for finding useful contextual equivalences, including an induction principle. To demon-
strate their usefulness, we use these tools to derive the usual equations for mutable state,
including a general commutativity law for computations using non-interfering references.
We have formalized the effect system, the operational semantics, and the safety theorem
in Twelf.

1. INTRODUCTION

An effect system supplements a traditional type system for a programming language with
information about which computational effects may, will, or will not happen when a piece of
code is executed. A well designed and solidly implemented effect system helps programmers
understand source code, find mistakes, as well as safely rearrange, optimize, and parallelize
code [11, 8]. As many before us (11, 24, 25, 7] we take on the task of striking just the right
balance between simplicity and expressiveness by devising an effect system for Eff [2], an
ML-style programming language with first-class algebraic effects [17, 15] and handlers [19].

Our effect system is descriptive in the sense that it provides information about pos-
sible computational effects but it does not prescribe them. In contrast, Haskell’s monads
prescribe the possible effects by wrapping types into computational monads. In the imple-
mentation we envision effect inference which never fails, although in some cases it may be
uninformative. Of course, typing errors are still errors.

An important feature of our effect system is non-monotonicity: it detects the fact that
a handler removes some effects. For instance, a piece of code which uses mutable state is
determined to actually be pure when wrapped by a handler that handles away lookups and
updates.

1998 ACM Subject Classification: D3.3, F3.2, F3.3.
Key words and phrases: algebraic effects, effect handlers, effect system.
A preliminary version of this work was presented at CALCO 2013, see [3].

LOGICAL METHODS © Andrej Bauer and Matija Pretnar
IN COMPUTER SCIENCE DOI:10.2168/LMCS-??? Creative Commons

1

AN EFFECT SYSTEM FOR ALGEBRAIC EFFECTS AND HANDLERS

ANDREJ BAUER AND MATIJA PRETNAR

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
e-mail address: Andrej.Bauer@andrej.com

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia o J_
e-mail address: matija.pretnar@fmf.uni-lj.si UOGWU UV 11Aaliulo y

IUIGLD LT
OIIUYY 1L LiCuL
D. LIUWGVYTIL, VWilTLL

ituation i site to
| ' tions. The situation 18 oppo
: : cribe the behavior of opera . Jire that the
ey feﬁgllvalellllec:f vfrl;a;;ta.rtd% with an equational theory for operations and req
that o y W

let f = (with h handlec) in fe

as H|[c, €]. Straightforward calculations give us the equivalences

H|(1#Lookup O (¥ c)),e] = ’H[c[e{y], el
H|(#update €' (_.c)), e| Hlc, €]

/

eryWIAPPIIg types into computational monads. In the imple-

chtatlon we envision effect inference which never fails, although in some cases it may be
uninformative. Of course, typing errors are still errors.

An important feature of our effect system is non-monotonicity: it detects the fact that

a handler removes some effects. For instance, a piece of code which uses mutable state is

determined to actually be pure when wrapped by a handler that handles away lookups and
updates.

)

1998 ACM Subject Classification: D3.3, F3.2, F3.3.
Key words and phrases: algebraic effects, effect handlers, effect system.
A preliminary version of this work was presented at CALCO 2013, see [3].

LOGICAL METHODS © Andr

ej Bauer and Matija Pretnar
IN COMPUTER SCIENCE DOI:10.2168/LMCS-??? Creative Commons

1

T xlc] = with pickMax handle ¢

meax[do X —cIn (Cl EBCQ)]

ﬁ?max[(do X —c In c_l) ®(do x — c In cz)]

FCmax :do x1 —c1In (do xo — co In c):

Fmax|do xg — cg in (do x1 —c1 in ¢)

MAKE EQUATIONS
GREAT AGAIN!

Fmega

values & computations

U ..— " °°

C..—=

h ::: o o o
handlers

value types

Ai=--
C:=A'A/&

computation types

[Th _
=Tj |
(T
1:
Tg)Eéa
glob
al

h
1S
COrrTr
e
ct

h h
[Tl — TZ](Tl=T2)€<§a

h respects &

I'Fh:A'A=C
h respects &

I'Fhandlerh :A!A/E=C

I'Fv:A
I'Fretv:A!A/E&

I'Fe1:AV'A/E I'x:AFco:B!'A/&
[Fdox—ciinco:B!A/&

ke :AlA|. op € A
I'Fop(c;); :A'A/E

(T=THe& citAVA/E],

Tlci/zili =ane T'leilzil;

FCrandlc] = cet with random handle ¢

F6. . [c] = with toList handle ¢

do xs — AG;silc1 ®(co @ c3)] In

ret (x € xs)

ret true

let pickMax = handler
choose k1 k2 =

max (ki () (k2 ())
fail = -inf
Al {@,fail}/é"semﬂattice = A D / D

A ! {®,beep,tail}/ &1pudsemilattice
= A ! {beep}/{beep(beep(z)) = beep(z)}

myQuery:A — B!2Xgqr,/ @

queryBraga:B!2gq1,/Esqr. > B! @/ &

myQuery:A — B!2Xgqr,/ @
queryBraga:B!2gq1,/Esqr. > B! @/ &

optimizeSQL: B! 2gq1,/ @ = B! 25qL/ EsqL

swap = handler (k1 ® ko — ko @ k1)

swap:A!A/E=>AVA/E

for all & < gsemilattice

FUTURE \WORK

usual suspects
esemantics
esafety
esoundness

useful implementation
*QuickCheck / QuickSpec
ecompiler optimizations

powerful logic
eextended reasoning
emore powerful specification

