
ASYNCHRONOUS
OPERATIONS

Matija PretnarDanel Ahman
University of Ljubljana, Slovenia

SPLS, 7 Jun 2023, University of the West of Scotland

THE IDEA

M1

⇝M1 M2

⇝M1 M2 M3⇝

⇝M1 M2 M3 M4⇝ ⇝

⇝M1 M2 M3 M4⇝ ⇝ M5⇝

M1

⇝M1 M2

↑𝗈𝗉
⇝M1 M2

↑𝗈𝗉 ↓𝗋𝖾𝗌
⇝M1 M2 M3

↑𝗈𝗉 ↓𝗋𝖾𝗌
⇝M1 M2 M3 M4⇝

↑𝗈𝗉 ↓𝗋𝖾𝗌
⇝M1 M2 M3 M4⇝ M5⇝

M1

⇝M1 Ms

↑𝗋𝖾𝗊
⇝M1 Ms

↑𝗋𝖾𝗊
⇝M1 Ms M2⇝

↑𝗋𝖾𝗊
⇝M1 Ms M2 M3⇝ ⇝

↑𝗋𝖾𝗊
⇝M1 Ms M2 M3⇝ ⇝ M4⇝

↑𝗋𝖾𝗊
⇝M1 Ms M2 M3⇝ ⇝ M4⇝

↑𝗋𝖾𝗊 ↓𝗋𝖾𝗌𝗉
⇝M1 Ms M2 M3⇝ ⇝ M4⇝

↑𝗋𝖾𝗊 ↓𝗋𝖾𝗌𝗉

⇝
Mp

⇝M1 Ms M2 M3⇝ ⇝ M4⇝

M1

⇝M1 Mw

↓𝗋𝖾𝗊
⇝M1 Mw

↓𝗋𝖾𝗊
⇝M1 Mw Mp⇝

↓𝗋𝖾𝗊
⇝M1 Mw Mp Ms⇝ ⇝

↓𝗋𝖾𝗊 ↑𝗋𝖾𝗌𝗉
⇝M1 Mw Mp Ms⇝ ⇝

↓𝗋𝖾𝗊 ↑𝗋𝖾𝗌𝗉
⇝M1 Mw Mp Ms⇝ ⇝ Mw⇝

M1

⇝M1 M2

↓𝗌𝗍𝗈𝗉
⇝M1 M2

↓𝗌𝗍𝗈𝗉
⇝M1 M2 Mw2

⇝

↓𝗌𝗍𝗈𝗉 ↓𝗀𝗈
⇝M1 M2 Mw2

⇝

↓𝗌𝗍𝗈𝗉 ↓𝗀𝗈
⇝M1 M2 Mw2

M2⇝ ⇝

↓𝗌𝗍𝗈𝗉 ↓𝗀𝗈
⇝M1 M2 Mw2

M2⇝ ⇝ M3⇝

M1

M1

↑𝗍𝗂𝖼𝗄

⇝M1 M2

↑𝗍𝗂𝖼𝗄

↑𝗍𝗈𝖼𝗄
⇝M1 M2

↑𝗍𝗂𝖼𝗄

↑𝗍𝗈𝖼𝗄
⇝M1 M2 M1⇝

↑𝗍𝗂𝖼𝗄

↑𝗍𝗈𝖼𝗄
⇝M1 M2 M1⇝

↑𝗍𝗂𝖼𝗄↑𝗍𝗂𝖼𝗄

↑𝗍𝗈𝖼𝗄
⇝M1 M2 M1 M2⇝ ⇝

↑𝗍𝗂𝖼𝗄↑𝗍𝗂𝖼𝗄

↑𝗍𝗈𝖼𝗄
⇝M1 M2 M1 M2⇝ ⇝

↑𝗍𝗂𝖼𝗄 ↑𝗍𝗈𝖼𝗄↑𝗍𝗂𝖼𝗄

↑𝗍𝗈𝖼𝗄
⇝M1 M2 M1 M2⇝ ⇝ M1⇝

↑𝗍𝗂𝖼𝗄 ↑𝗍𝗈𝖼𝗄↑𝗍𝗂𝖼𝗄

THE IDEA

CORE
CALCULUS

𝖿𝗎𝗇 (x : X) ↦ M V W
𝗋𝖾𝗍𝗎𝗋𝗇 V 𝗅𝖾𝗍 x = M 𝗂𝗇 N

M ⇝ N
ℰ[M] ⇝ ℰ[N]

ℰ ::= [] 𝗅𝖾𝗍 x = ℰ 𝗂𝗇 N ⋯

(𝖿𝗎𝗇 (x : X) ↦ M) V ⇝ M[V/x]
𝗅𝖾𝗍 x = (𝗋𝖾𝗍𝗎𝗋𝗇 V) 𝗂𝗇 N ⇝ N[V/x]

demo

CORE
CALCULUS

𝖿𝗎𝗇 (x : X) ↦ M V W
𝗋𝖾𝗍𝗎𝗋𝗇 V 𝗅𝖾𝗍 x = M 𝗂𝗇 N

OUTGOING
SIGNALS

↑ 𝗈𝗉 (V, M)

𝗅𝖾𝗍 x = (↑ 𝗈𝗉 (V, M)) 𝗂𝗇 N
⇝ ↑ 𝗈𝗉 (V, 𝗅𝖾𝗍 x = M 𝗂𝗇 N)

ℰ ::= ⋯ ↑ 𝗈𝗉 (V, ℰ)

𝗅𝖾𝗍 x = (↑ 𝗈𝗉 (V, M)) 𝗂𝗇 N
⇝ ↑ 𝗈𝗉 (V, 𝗅𝖾𝗍 x = M 𝗂𝗇 N)

ℰ ::= ⋯ ↑ 𝗈𝗉 (V, ℰ)

no bound
variable

demo

OUTGOING
SIGNALS

↑ 𝗈𝗉 (V, M)

↓ 𝗈𝗉 (V, M)

INCOMING
INTERRUPTS

ℰ ::= ⋯ ↓ 𝗈𝗉 (V, ℰ)

↓ 𝗈𝗉 (V, 𝗋𝖾𝗍𝗎𝗋𝗇 W) ⇝ 𝗋𝖾𝗍𝗎𝗋𝗇 W

↓ 𝗈𝗉 (V, ↑ 𝗈𝗉′￼(W, M)) ⇝ ↑ 𝗈𝗉′￼(W, ↓ 𝗈𝗉 (V, M))

demo

INCOMING
INTERRUPTS

↓ 𝗈𝗉 (V, M)

INTERRUPT
HANDLERS

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

ℰ ::= ⋯ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ℰ

𝗅𝖾𝗍 x = (𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 y ↦ M1) 𝖺𝗌 p 𝗂𝗇 M2) 𝗂𝗇 N
⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 y ↦ M1) 𝖺𝗌 p 𝗂𝗇 (𝗅𝖾𝗍 x = M2 𝗂𝗇 N)

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ↑ 𝗈𝗉′￼(V, N)
⇝ ↑ 𝗈𝗉′￼(V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)

ℰ ::= ⋯ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ℰ

𝗅𝖾𝗍 x = (𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 y ↦ M1) 𝖺𝗌 p 𝗂𝗇 M2) 𝗂𝗇 N
⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 y ↦ M1) 𝖺𝗌 p 𝗂𝗇 (𝗅𝖾𝗍 x = M2 𝗂𝗇 N)

bound
variable

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ↑ 𝗈𝗉′￼(V, N)
⇝ ↑ 𝗈𝗉′￼(V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)

ℰ ::= ⋯ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ℰ

𝗅𝖾𝗍 x = (𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 y ↦ M1) 𝖺𝗌 p 𝗂𝗇 M2) 𝗂𝗇 N
⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 y ↦ M1) 𝖺𝗌 p 𝗂𝗇 (𝗅𝖾𝗍 x = M2 𝗂𝗇 N)

bound
variable

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ↑ 𝗈𝗉′￼(V, N)
⇝ ↑ 𝗈𝗉′￼(V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)

algebraicity

ℰ ::= ⋯ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ℰ

𝗅𝖾𝗍 x = (𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 y ↦ M1) 𝖺𝗌 p 𝗂𝗇 M2) 𝗂𝗇 N
⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 y ↦ M1) 𝖺𝗌 p 𝗂𝗇 (𝗅𝖾𝗍 x = M2 𝗂𝗇 N)

bound
variable

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ↑ 𝗈𝗉′￼(V, N)
⇝ ↑ 𝗈𝗉′￼(V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)

algebraicity

commutativity

↓ 𝗈𝗉 (V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)
⇝ 𝗅𝖾𝗍 p = M[V/x] 𝗂𝗇 ↓ 𝗈𝗉 (V, N)

↓ 𝗈𝗉′￼(V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)
⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ↓ 𝗈𝗉′￼(V, N)

↓ 𝗈𝗉 (V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)
⇝ 𝗅𝖾𝗍 p = M[V/x] 𝗂𝗇 ↓ 𝗈𝗉 (V, N)

↓ 𝗈𝗉′￼(V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)
⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ↓ 𝗈𝗉′￼(V, N)

“handling”

INTERRUPT
HANDLERS

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

AWAITING
PROMISES

⟨V⟩
𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 M

𝖺𝗐𝖺𝗂𝗍 ⟨V⟩ 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 M ⇝ M[V/x]

𝗅𝖾𝗍 x = (𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨y⟩ 𝗂𝗇 M) 𝗂𝗇 N
⇝ 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨y⟩ 𝗂𝗇 (𝗅𝖾𝗍 x = M 𝗂𝗇 N)

↓ 𝗈𝗉 (V, 𝖺𝗐𝖺𝗂𝗍 W 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 M)
⇝ 𝖺𝗐𝖺𝗂𝗍 W 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 ↓ 𝗈𝗉 (V, M)

𝖺𝗐𝖺𝗂𝗍 ⟨V⟩ 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 M ⇝ M[V/x]

𝗅𝖾𝗍 x = (𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨y⟩ 𝗂𝗇 M) 𝗂𝗇 N
⇝ 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨y⟩ 𝗂𝗇 (𝗅𝖾𝗍 x = M 𝗂𝗇 N)

↓ 𝗈𝗉 (V, 𝖺𝗐𝖺𝗂𝗍 W 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 M)
⇝ 𝖺𝗐𝖺𝗂𝗍 W 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 ↓ 𝗈𝗉 (V, M)

algebraicity

“handling”

demo

AWAITING
PROMISES

⟨V⟩
𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 M

TYPES

Γ ⊢ V : X
Γ ⊢ M : X!𝒞

Γ, x : X, Γ′￼ ⊢ x : X

Γ ⊢ () : 𝟣

Γ, x : X ⊢ M : Y!𝒞
Γ ⊢ 𝖿𝗎𝗇 (x : X) ↦ M : X → Y!𝒞

Γ ⊢ V : X
Γ ⊢ 𝗋𝖾𝗍𝗎𝗋𝗇 V : X!𝒞

Γ ⊢ M : X!𝒞 Γ, x : X ⊢ N : Y!𝒞
Γ ⊢ 𝗅𝖾𝗍 x = M 𝗂𝗇 N : Y!𝒞

Γ ⊢ V : X → Y!𝒞 Γ ⊢ W : X
Γ ⊢ V W : Y!𝒞

Γ ⊢ V : X
Γ ⊢ ⟨V⟩ : ⟨X⟩

Γ ⊢ V : ⟨X⟩ Γ, x : X ⊢ M : Y!𝒞
Γ ⊢ 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 M : Y!𝒞

𝒞 = (o, ι)

o = {𝗈𝗉1, …, 𝗈𝗉m}
ι = {𝗈𝗉′￼

1 ↦ 𝒞1, …, 𝗈𝗉′￼

n ↦ 𝒞n}

ιm = {𝗌𝗍𝗈𝗉 ↦ (∅, {𝗀𝗈 ↦ (∅, ιm)})}

ιp1
= {𝗉𝗂𝗇𝗀 ↦ ({𝗉𝗈𝗇𝗀}, ∅)}

ιp = {𝗉𝗂𝗇𝗀 ↦ ({𝗉𝗈𝗇𝗀}, ιp)}

𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X!(o, ι)
Γ ⊢ ↑ 𝗈𝗉 (V, M) : X!(o, ι)

ι(𝗈𝗉) = 𝒞
Γ, x : A𝗈𝗉 ⊢ M : ⟨X⟩!𝒞
Γ, p : ⟨X⟩ ⊢ N : Y!(o, ι)

Γ ⊢ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N : Y!(o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X!𝒞
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X!(𝗈𝗉 ↓ 𝒞)

𝗈𝗉 ↓ (o, ι) = {
(o ∪ o′￼, ι |𝗈𝗉′￼≠𝗈𝗉 ∪ ι′￼) ι(𝗈𝗉) = (o′￼, ι′￼)

(o, ι) otherwise

Γ ⊢ M : X!𝒞 ∧ M ⇝ M′￼

⟹ Γ ⊢ M′￼ : X!𝒞
preservation

progress
⊢ M : X!𝒞

⟹ M ⇝ M′￼ ∨ M is final

Γ ⊢ M : X!𝒞 ∧ M ⇝ M′￼

⟹ Γ ⊢ M′￼ : X!𝒞

✔︎

preservation

progress
⊢ M : X!𝒞

⟹ M ⇝ M′￼ ∨ M is final

Γ ⊢ M : X!𝒞 ∧ M ⇝ M′￼

⟹ Γ ⊢ M′￼ : X!𝒞

✔︎

✔︎
preservation

progress
⊢ M : X!𝒞

⟹ M ⇝ M′￼ ∨ M is final

TYPES

Γ ⊢ V : X
Γ ⊢ M : X!(o, ι)

PROCESSES

↑ 𝗈𝗉 (V, P) ↓ 𝗈𝗉 (V, P)
𝗋𝗎𝗇 M P ∥ Q

P ⇝ Q
ℱ[P] ⇝ ℱ[Q]

ℱ ::= [] ℱ ∥ Q P ∥ ℱ

↑ 𝗈𝗉 (V, ℱ) ↓ 𝗈𝗉 (V, ℱ)

M ⇝ N
𝗋𝗎𝗇 M ⇝ 𝗋𝗎𝗇 N

𝗋𝗎𝗇 (↑ 𝗈𝗉 (V, M)) ⇝ ↑ 𝗈𝗉 (V, 𝗋𝗎𝗇 M)
↑ 𝗈𝗉 (V, P) ∥ Q ⇝ ↑ 𝗈𝗉 (V, P ∥ ↓ 𝗈𝗉 (V, Q))
P ∥ ↑ 𝗈𝗉 (V, Q) ⇝ ↑ 𝗈𝗉 (V, ↓ 𝗈𝗉 (V, P) ∥ Q)

↓ 𝗈𝗉 (V, 𝗋𝗎𝗇 M) ⇝ 𝗋𝗎𝗇 (↓ 𝗈𝗉 (V, M))
↓ 𝗈𝗉 (V, P ∥ Q) ⇝ ↓ 𝗈𝗉 (V, P) ∥ ↓ 𝗈𝗉 (V, Q)

↓ 𝗈𝗉 (V, ↑ 𝗈𝗉′￼(W, P)) ⇝ ↑ 𝗈𝗉′￼(W, ↓ 𝗈𝗉 (V, P))

demo

demo
Mi ⇝ M′￼i

M1 ∥ ⋯ ∥ Mi ∥ ⋯ ∥ Mn ⇝ M1 ∥ ⋯ ∥ M′￼i ∥ ⋯ ∥ Mn

demo
Mi ⇝ M′￼i

M1 ∥ ⋯ ∥ Mi ∥ ⋯ ∥ Mn ⇝ M1 ∥ ⋯ ∥ M′￼i ∥ ⋯ ∥ Mn

M1 ∥ ⋯ ∥ ↑ 𝗈𝗉 (V, Mi) ∥ ⋯ ∥ Mn

⇝ ↓ 𝗈𝗉 (V, M1) ∥ ⋯ M′￼i⋯ ∥ ↓ 𝗈𝗉 (V, Mn)

Γ ⊢ M : X!(o, ι)
Γ ⊢ 𝗋𝗎𝗇 M : X!!(o, ι)

Γ ⊢ P : C Γ ⊢ Q : D
Γ ⊢ P ∥ Q : C ∥ D

𝗈𝗉 ∈ 𝗌𝗂𝗀𝗇𝖺𝗅𝗌(C) Γ ⊢ V : A𝗈𝗉 Γ ⊢ P : C

Γ ⊢ ↑ 𝗈𝗉 (V, P) : C

Γ ⊢ V : A𝗈𝗉 Γ ⊢ P : C

Γ ⊢ ↓ 𝗈𝗉 (V, P) : 𝗈𝗉 ↓ C

𝗈𝗉 ↓ (X!!(o, ι)) = X!!(𝗈𝗉 ↓ (o, ι))
𝗈𝗉 ↓ (C ∥ D) = (𝗈𝗉 ↓ C) ∥ (𝗈𝗉 ↓ D)

Γ ⊢ P : C ∧ P ⇝ P′￼

⟹ Γ ⊢ P′￼ : C
preservation

progress
⊢ P : C

⟹ P ⇝ P′￼ ∨ P is final

Γ ⊢ P : C ∧ P ⇝ P′￼

⟹ Γ ⊢ P′￼ : C

✔︎

preservation

progress
⊢ P : C

⟹ P ⇝ P′￼ ∨ P is final

Γ ⊢ P : C ∧ P ⇝ P′￼

⟹ Γ ⊢ P′￼ : C

✔︎

✘
preservation

progress
⊢ P : C

⟹ P ⇝ P′￼ ∨ P is final

↑ 𝗈𝗉 (V, P) ∥ Q ⇝ ↑ 𝗈𝗉 (V, P ∥ ↓ 𝗈𝗉 (V, Q))

↑ 𝗈𝗉 (V, P) ∥ Q ⇝ ↑ 𝗈𝗉 (V, P ∥ ↓ 𝗈𝗉 (V, Q))

additional effects of
triggered handlers

X!!(o, ι) ↝ X!!(o, ι)

X!!𝗈𝗉𝗌 ↓ (o, ι) ↝ X!!𝗈𝗉𝗌 ↓ (𝗈𝗉 ↓ (o, ι))

C ↝ C′￼ D ↝ D′￼

C ∥ D ↝ C′￼∥ D′￼

Γ ⊢ P : C ∧ P ⇝ P′￼

⟹ ∃C′￼. C ↝ C′￼ ∧ Γ ⊢ P′￼ : C′￼

preservation

progress
⊢ P : C

⟹ P ⇝ P′￼ ∨ P is final

Γ ⊢ P : C ∧ P ⇝ P′￼

⟹ ∃C′￼. C ↝ C′￼ ∧ Γ ⊢ P′￼ : C′￼

✔︎

preservation

progress
⊢ P : C

⟹ P ⇝ P′￼ ∨ P is final

Γ ⊢ P : C ∧ P ⇝ P′￼

⟹ ∃C′￼. C ↝ C′￼ ∧ Γ ⊢ P′￼ : C′￼

✔︎

✔︎preservation

progress
⊢ P : C

⟹ P ⇝ P′￼ ∨ P is final

PROCESSES

↑ 𝗈𝗉 (V, P) ↓ 𝗈𝗉 (V, P)
𝗋𝗎𝗇 M P ∥ Q

EXTENSIONS

𝒞 ⊑ ι (𝗈𝗉) Γ, p : ⟨X⟩ ⊢ N : Y!(o, ι)
Γ, x : A𝗈𝗉, r : 𝟣 → ⟨X⟩!(∅, {𝗈𝗉 ↦ 𝒞}) ⊢ M : ⟨X⟩!𝒞

Γ ⊢ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x r ↦ M) 𝖺𝗌 p 𝗂𝗇 N : Y!(o, ι)

↓ 𝗈𝗉 (V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x r ↦ M) 𝖺𝗌 p 𝗂𝗇 N)
⇝ 𝗅𝖾𝗍 p = M[V/x, R/r] 𝗂𝗇 ↓ 𝗈𝗉 (V, N)

where R = 𝖿𝗎𝗇 () ↦ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x r ↦ M) 𝖺𝗌 p 𝗂𝗇 𝗋𝖾𝗍𝗎𝗋𝗇 p

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ↑ 𝗈𝗉′￼(V, N)
⇝ ↑ 𝗈𝗉′￼(V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ↑ 𝗈𝗉′￼(V, N)
⇝ ↑ 𝗈𝗉′￼(V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 ↑ 𝗈𝗉′￼(V, N)
⇝ ↑ 𝗈𝗉′￼(V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)

😬

𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X!(o, ι)
Γ ⊢ ↑ 𝗈𝗉 (V, M) : X!(o, ι)

A, B ::= 𝖻 𝟣 𝟢 A × B A + B

X, Y ::= A X × Y X + Y

X → Y!(o, ι) ⟨X⟩

𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X!(o, ι)
Γ ⊢ ↑ 𝗈𝗉 (V, M) : X!(o, ι)

A, B ::= 𝖻 𝟣 𝟢 A × B A + B

X, Y ::= A X × Y X + Y

X → Y!(o, ι) ⟨X⟩

[X]

[X]

X is mobile or ◼ ∉ Γ′￼

Γ, x : X, Γ′￼ ⊢ x : X
Γ, ◼ ⊢ V : X
Γ ⊢ [V] : [X]

𝗎𝗇𝖻𝗈𝗑 [V] 𝖺𝗌 [x] 𝗂𝗇 M ⇝ M[V/x]

Γ ⊢ V : [X] Γ, x : X ⊢ M : Y!𝒞
Γ ⊢ 𝗎𝗇𝖻𝗈𝗑 V 𝖺𝗌 [x] 𝗂𝗇 M : Y!𝒞

Γ, ◼ ⊢ M : X!𝒞 Γ ⊢ N : Y!𝒞′￼

Γ ⊢ 𝗌𝗉𝖺𝗐𝗇 (M, N) : Y!𝒞′￼

𝗋𝗎𝗇 (𝗌𝗉𝖺𝗐𝗇 (M, N)) ⇝ 𝗋𝗎𝗇 M ∥ 𝗋𝗎𝗇 N

↓ 𝗈𝗉 (V, 𝗌𝗉𝖺𝗐𝗇 (M, N))
⇝ 𝗌𝗉𝖺𝗐𝗇 (M, ↓ 𝗈𝗉 (V, N))

𝗅𝖾𝗍 x = (𝗌𝗉𝖺𝗐𝗇 (M1, M2)) 𝗂𝗇 N
⇝ 𝗌𝗉𝖺𝗐𝗇 (M1, 𝗅𝖾𝗍 x = M2 𝗂𝗇 N)

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x r ↦ M) 𝖺𝗌 p 𝗂𝗇 𝗌𝗉𝖺𝗐𝗇 (N1, N2)
⇝ 𝗌𝗉𝖺𝗐𝗇 (N1, (𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x r ↦ M) 𝖺𝗌 p 𝗂𝗇 N2))

↓ 𝗈𝗉 (V, 𝗌𝗉𝖺𝗐𝗇 (M, N))
⇝ 𝗌𝗉𝖺𝗐𝗇 (M, ↓ 𝗈𝗉 (V, N))

𝗅𝖾𝗍 x = (𝗌𝗉𝖺𝗐𝗇 (M1, M2)) 𝗂𝗇 N
⇝ 𝗌𝗉𝖺𝗐𝗇 (M1, 𝗅𝖾𝗍 x = M2 𝗂𝗇 N)

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x r ↦ M) 𝖺𝗌 p 𝗂𝗇 𝗌𝗉𝖺𝗐𝗇 (N1, N2)
⇝ 𝗌𝗉𝖺𝗐𝗇 (N1, (𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x r ↦ M) 𝖺𝗌 p 𝗂𝗇 N2))

algebraicity

commutativity

“handling”

demo

EXTENSIONS

INTERESTED?

24

Asynchronous Effects

DANEL AHMAN and MATIJA PRETNAR, University of Ljubljana, Slovenia
We explore asynchronous programmingwith algebraic effects.We complement their conventional synchronoustreatment by showing how to naturally also accommodate asynchrony within them, namely, by decouplingthe execution of operation calls into signalling that an operation’s implementation needs to be executed,and interrupting a running computation with the operation’s result, to which the computation can react byinstalling interrupt handlers. We formalise these ideas in a small core calculus, called 𝜆æ. We demonstrate theflexibility of 𝜆æ using examples ranging from a multi-party web application, to preemptive multi-threading, toremote function calls, to a parallel variant of runners of algebraic effects. In addition, the paper is accompaniedby a formalisation of 𝜆æ’s type safety proofs in Agda, and a prototype implementation of 𝜆æ in OCaml.
CCS Concepts: • Theory of computation→ Concurrency; Program constructs; Program semantics.
Additional Key Words and Phrases: algebraic effects, asynchrony, concurrency, interrupt handling, signals.
ACM Reference Format:
Danel Ahman and Matija Pretnar. 2021. Asynchronous Effects. Proc. ACM Program. Lang. 5, POPL, Article 24(January 2021), 28 pages. https://doi.org/10.1145/3434305

1 INTRODUCTION

Effectful programming abstractions are at the heart of many modern general-purpose programminglanguages. They can increase expressiveness by giving access to first-class continuations, but oftensimply help users to write cleaner code, e.g., by avoiding having to manage a program’s memoryexplicitly in state-passing style, or getting lost in callback hell while programming asynchronously.An increasing number of language designers and programmers are starting to embrace algebraiceffects, where one uses algebraic operations [Plotkin and Power 2002] and effect handlers [Plotkinand Pretnar 2013] to uniformly and user-definably express a wide range of effectful behaviour,ranging from basic examples such as state, rollbacks, exceptions, and nondeterminism [Bauerand Pretnar 2015], to advanced applications in concurrency [Dolan et al. 2018] and statisticalprobabilistic programming [Bingham et al. 2019], and even quantum computation [Staton 2015].While covering many examples, the conventional treatment of algebraic effects is synchronousby nature. In it effects are invoked by placing operation calls in one’s code, which then propagateoutwards until they trigger the actual effect, finally yielding a result to the rest of the computationthat has been waiting the whole time. While blocking the computation is indeed sometimes needed,e.g., in the presence of general effect handlers that can execute their continuation any number oftimes, it forces all uses of algebraic effects to be synchronous, even when this is not necessary, e.g.,when the effect involves executing a remote query to which a response is not needed (immediately).Motivated by the recent interest in the combination of asynchrony and algebraic effects [Dolanet al. 2018; Leijen 2017], we explore what it takes (in terms of language design, safe programmingabstractions, and a self-contained core calculus) to accompany the synchronous treatment of
Authors’ address: Danel Ahman, danel.ahman@fmf.uni-lj.si; Matija Pretnar, matija.pretnar@fmf.uni-lj.si, University ofLjubljana, Faculty of Mathematics and Physics, Jadranska 21, Ljubljana, SI-1000, Slovenia.

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/1-ART24
https://doi.org/10.1145/3434305

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 24. Publication date: January 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HIGHER-ORDER ASYNCHRONOUS EFFECTS ⇤

DANEL AHMAN a AND MATIJA PRETNAR a,b

a University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, SI-1000 Ljubljana,Slovenia
e-mail address: danel.ahman@fmf.uni-lj.si, matija.pretnar@fmf.uni-lj.si

b Institute of Mathematics, Physics and Mechanics, Jadranska 21, SI-1000 Ljubljana, Slovenia

Abstract. We explore asynchronous programming with algebraic effects. We complementtheir conventional synchronous treatment by showing how to naturally also accommodateasynchrony within them, namely, by decoupling the execution of operation calls intosignalling that an operation’s implementation needs to be executed, and interrupting arunning computation with the operation’s result, to which the computation can react byinstalling interrupt handlers. We formalise these ideas in a small core calculus, called�æ. We demonstrate the flexibility of �æ using examples ranging from a multi-party webapplication, to preemptive multi-threading, to remote function calls, to a parallel variantof runners of algebraic effects. In addition, the paper is accompanied by a formalisation of�æ’s type safety proofs in Agda, and a prototype implementation of �æ in OCaml.

Before
sumbitting,
go through
LMCS check-
list

Create
LMCS Git
tags for AEff
and Agda

1. Introduction
Effectful programming abstractions are at the heart of many modern general-purpose program-ming languages. They can increase expressiveness by giving access to first-class continuations,but often simply help users to write cleaner code, e.g., by avoiding having to manage aprogram’s memory explicitly in state-passing style, or getting lost in callback hell whileprogramming asynchronously.

An increasing number of language designers and programmers are starting to embracealgebraic effects, where one uses algebraic operations [PP02] and effect handlers [PP13] touniformly and user-definably express a wide range of effectful behaviour, ranging from basicexamples such as state, rollbacks, exceptions, and nondeterminism [BP15], to advancedapplications in concurrency [DEH+18] and statistical probabilistic programming [BCJ+19],and even quantum computation [Sta15].
While covering many examples, the conventional treatment of algebraic effects is syn-chronous by nature. In it effects are invoked by placing operation calls in one’s code, which

Key words and phrases: algebraic effects, asynchrony, concurrency, interrupt handling, signals.⇤ This paper is an extended version of our previous work [AP21], which simplifies the meta-theory, removesthe reliance on general recursion for reinstallable interrupt handlers, extends the calculus with higher-orderinterrupt payloads and dynamic process creation, and strengthens the examples of application.This project has received funding from the European Union’s Horizon 2020 research and innovationprogramme under the Marie Skłodowska-Curie grant agreement No 834146 . This material is based uponwork supported by the Air Force Office of Scientific Research under awards number FA9550-17-1-0326 andFA9550-21-1-0024.

Preprint submitted to
Logical Methods in Computer Science © D. Ahman and M. Pretnar

CC� Creative Commons

danelahman / aeff-agda Public

 1 branch 1 tag

Agda formalisation of the AEff language

Note: For the Agda formalisation of a newer version of AEff (extended with reinstallable interrupt handlers, higher-
order payloads for signals and interrupts, and dynamic process creation), see here.

The formalisation has been tested with Agda version 2.6.1 and standard library version 1.3.

The unicode symbols used in the source code have tested to display correctly with the DejaVu Sans Mono
font.

EffectAnnotations.agda - effect annotations for signals and interrupt handlers

Types.agda - value, computation, and process types

AEff.agda - well-typed values, computations, and processes (we do not consider untyped terms)

Renamings.agda - renamings for values, computations, and processes

Substitutions.agda - substitutions for values, computations, and processes

Preservation.agda - small-step operational semantics for computations (also serves as a preservation
proof)

AwaitingComputations.agda - characterisation of computations that are temporarily blocked awaiting a
promise

Progress.agda - proof of progress for the small-step operational semantics of computations

ProcessPreservation.agda - small-step operational semantics for processes (also serves as a preservation
proof)

ProcessProgress.agda - proof of progress for the small-step operational semantics of processes

Finality.agda - proof that the result forms of computations are final, i.e., they do not reduce further

ProcessFinality.agda - proof that the result forms of processes are final, i.e., they do not reduce further

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 834146.

This material is based upon work supported by the Air Force Office of Scientific Research under
awards number FA9550-17-1-0326 and FA9550-21-1-0024.

About

Agda formalisation of the AEff language

 Readme

 MIT license

 6 stars

 3 watching

 0 forks

Report repository

Releases 1

POPL 2021 Latest

on Nov 10, 2020

Packages

No packages published

Languages

Agda 100.0%

Notifications Fork 0 Star 6

Code Issues Pull requests Actions Projects Security Insights

 master Go to file Code

danelahman license 71ebed9 on Oct 7, 2021 162 commits

AEff.agda merging value, computation, and process type modules 3 years ago

AwaitingComputations.agda removing unused lemmas and better naming conventions 3 years ago

EffectAnnotations.agda Proof-irrelevance of subtyping relations 3 years ago

Finality.agda Finality of result forms 3 years ago

LICENSE.md license 2 years ago

Preservation.agda Syncing a lemma annotation with the paper. Removing a spurious mu… 3 years ago

ProcessFinality.agda Tweaking the notation 3 years ago

ProcessPreservation.agda Tweaking the notation 3 years ago

ProcessProgress.agda Finality of process result forms 3 years ago

Progress.agda Syncing names with the paper 3 years ago

README.md Update README.md 2 years ago

Renamings.agda actions of renamings and substitutions for processes 3 years ago

Substitutions.agda actions of renamings and substitutions for processes 3 years ago

Types.agda Tweaking the notation 3 years ago

© 2023 GitHub, Inc. Terms Privacy Security Status Docs Contact GitHub Pricing API Training Blog About

README.md

Sign upProduct Solutions Open Source Pricing Search Sign in

danelahman /higher-order-aeff-agda Public

 1 branch 0 tags

Agda formalisation of the AEff language for higher-order
asynchronous effects

The core language formalised here differs from the original language as follows:

interrupt handlers are now able to reinstall themselves (without resorting to general let-rec);

payloads of signals/interrupts have been generalised to allow higher-order values (by the means of modal
types);

computations can spawn new processes (by the means of modal types); and

operational semantics and metatheory has been simplified (by treating await (more) like an algebraic
operation).

The formalisation has been tested with Agda version 2.6.1 and standard library version 1.5.

The unicode symbols used in the source code have tested to display correctly with the DejaVu Sans Mono
font.

The formalisation has the following structure:

EffectAnnotations.agda - effect annotations for signals and interrupt handlers

Types.agda - value, computation, and process types

AEff.agda - well-typed values, computations, and processes (we do not consider untyped terms)

Renamings.agda - renamings for values, computations, and processes

Substitutions.agda - substitutions for values, computations, and processes

Preservation.agda - small-step operational semantics for computations (also serves as a preservation
proof)

Progress.agda - proof of progress for the small-step operational semantics of computations

ProcessPreservation.agda - small-step operational semantics for processes (also serves as a
preservation proof)

ProcessProgress.agda - proof of progress for the small-step operational semantics of processes

Finality.agda - proof that the result forms of computations are final, i.e., they do not reduce further

ProcessFinality.agda - proof that the result forms of processes are final, i.e., they do not reduce
further

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 834146.

This material is based upon work supported by the Air Force Office of Scientific Research under
awards number FA9550-17-1-0326 and FA9550-21-1-0024.

About

No description, website, or topics
provided.

 Readme

 MIT license

 1 star

 3 watching

 0 forks

Report repository

Releases

No releases published

Packages

No packages published

Contributors 2

danelahman Danel Ahman

matijapretnar Matija Pretnar

Languages

Agda 100.0%

Notifications Fork 0 Star 1

Code Issues Pull requests Actions Security Insights

 main Go to file Code

danelahman license b41df71 on Oct 7, 2021 36 commits

AEff.agda removing let-rec from the core calculus 2 years ago

EffectAnnotations.agda Removing a redundant mutual block 2 years ago

Finality.agda removing the separate judgement of awaiting computations (not nee… 2 years ago

LICENSE.md license 2 years ago

Preservation.agda removing let-rec from the core calculus 2 years ago

ProcessFinality.agda for symmetry, allow type-level spawning both in left and right 2 years ago

ProcessPreservation.agda for symmetry, allow type-level spawning both in left and right 2 years ago

ProcessProgress.agda removing the separate judgement of awaiting computations (not nee… 2 years ago

Progress.agda removing the separate judgement of awaiting computations (not nee… 2 years ago

README.md Update README.md 2 years ago

Renamings.agda removing let-rec from the core calculus 2 years ago

Substitutions.agda removing let-rec from the core calculus 2 years ago

Types.agda wip: reinstallable interrupt handlers (up to coercion rules) 2 years ago

© 2023 GitHub, Inc. Terms Privacy Security Status Docs Contact GitHub Pricing API Training Blog About

README.md

Sign upProduct Solutions Open Source Pricing Search Sign in

matijapretnar / aeff Public

 3 branches 1 tag

Æff

Install dependencies by

and build Æff by running (requires OCaml >= 4.08.0)

and you can clean up by running

Æff gives you two options to run programs:

The first option is a web interface, accessible at web/index.html , which allows you to load one of the built-in
examples or enter your own program, and then interactively click through all its (non-deterministic and
asynchronous) reductions or introduce external interrupts.

The second option is a command line executable run as

which loads all the commands in all the listed files and starts evaluating the given program, displaying all
outgoing signals and the terminal configuration (if there is one). Non-deterministic reductions are chosen
randomly and there is no option of introducing external interrupts. If you do not want to load the standard
library, run Æff with the --no-stdlib option.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 834146.

This material is based upon work supported by the Air Force Office of Scientific Research under
awards number FA9550-17-1-0326 and FA9550-21-1-0024.

About

An interactive interpreter for
asynchronous algebraic effects

matija.pretnar.info/aeff/

 Readme

 MIT license

 10 stars

 3 watching

 3 forks

Report repository

Releases 1

POPL 2021 Latest

on Nov 10, 2020

Packages

No packages published

Contributors 3

matijapretnar Matija Pretnar

danelahman Danel Ahman

JanezRadescek

Languages

OCaml 94.3% HTML 3.9%

Emacs Lisp 1.6% Makefile 0.2%

Notifications Fork 3 Star 10

Code Issues Pull requests Actions Projects Security Insights

 master Go to file Code

danelahman license 3af50c5 on Oct 7, 2021 135 commits

.github/workflows Fix ocamlformat version 2 years ago

etc |-> ~> -> 2 years ago

examples Add dynamic creation of processes 2 years ago

src Improve checking of mobile type definitions 2 years ago

tests Improve checking of mobile type definitions 2 years ago

web Simplify styles 3 years ago

.gitignore Provide a command-line backend 3 years ago

.ocamlformat Enable OCamlFormat 3 years ago

LICENSE.md license 2 years ago

Makefile Add testing framework 3 years ago

README.md Update README.md 2 years ago

dune-project Switch to dune 3 years ago

opam install menhir ocaml-vdom ocamlformat

make

make clean

./aeff.exe file1.aeff file2.aeff ...

© 2023 GitHub, Inc. Terms Privacy Security Status Docs Contact GitHub Pricing API Training Blog About

README.md

Sign upProduct Solutions Open Source Pricing Search Sign in

matijapretnar /millet Public

 4 branches 0 tags

Millet

Do you, like me, test theoretical programming language concepts by building your own programming language? Do
you, like me, do it by copying and modifying your most recent language because you are too lazy to build
everything from scratch? Do you, like me, end up with a mess? Then Millet is for you. It is a pure ML-like language
with simple and modular codebase that you can use as a template for your next language.

How to install and run Millet?

Install dependencies by

and build Millet by running (requires OCaml >= 4.14.0)

and you can clean up by running

Millet gives you two options to run programs:

The first option is a web interface, accessible at web/index.html , which allows you to load one of the built-in
examples or enter your own program, and then interactively click through all its (non-deterministic and
asynchronous) reductions or introduce external interrupts. The web interface is also available at
https://matija.pretnar.info/millet/.

The second option is a command line executable run as

which loads all the commands in all the listed files and starts evaluating the given program, displaying all
outgoing signals and the terminal configuration (if there is one). Non-deterministic reductions are chosen
randomly and there is no option of introducing external interrupts. If you do not want to load the standard
library, run Millet with the --no-stdlib option.

How to use Millet as a template?

The easiest way is to first create an empty repository:

Next, add Millet's remote repository:

Then, create two branches, one for your main development and one for tracking Millet:

Now, each time Millet updates, you can run

to pull latest changes and merge them into your main development.

Why the name Millet?

Millet uses fine-grain call-by-value core calculus, and there is no finer grain than millet. Plus, the .mlt extension
fits nicely into the ML family.

About

A ML-like pure functional language that
can be used as a template for creating
your own language

matija.pretnar.info/millet/

 Readme

 19 stars

 3 watching

 0 forks

Report repository

Releases

No releases published

Packages

No packages published

Contributors 2

matijapretnar Matija Pretnar

zputrle Žiga Putrle

Languages

OCaml 90.8% Perl 8.4%

Other 0.8%

Notifications Fork 0 Star 19

Code Issues Pull requests Actions Security Insights

 main Go to file Code

matijapretnar Bump OCaml & ocamlformat version f28a4ba on Nov 16, 2022 43 commits

.github/workflows Bump OCaml & ocamlformat version 7 months ago

examples Initial commit 3 years ago

src Bump OCaml & ocamlformat version 7 months ago

tests Check for well-formed type definitions 2 years ago

web Sort out names 2 years ago

.gitignore Sort out names 2 years ago

.ocamlformat Bump OCaml & ocamlformat version 7 months ago

Makefile Simplify test folder 2 years ago

README.md Bump OCaml & ocamlformat version 7 months ago

dune-project Add initial cram tests setup 2 years ago

opam install menhir ocaml-vdom ocamlformat

make

make clean

./cli.exe file1.mlt file2.mlt ...

mkdir the-best-language
cd the-best-language
git init

git remote add millet git@github.com:matijapretnar/millet.git
git fetch millet

git branch --no-track main millet/main
git branch --track millet millet/main
git checkout main

git checkout millet
git pull
git checkout main
git merge millet

© 2023 GitHub, Inc. Terms Privacy Security Status Docs Contact GitHub Pricing API Training Blog About

README.md

Sign upProduct Solutions Open Source Pricing Search Sign in

FUTURE WORK

EFFICIENT
INTERPRETER

EFFECT-AWARE
OPTIMISATIONS

DENOTATIONAL
SEMANTICS

SCOPED?
HANDLERS

QUESTIONS?

