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Asynchronous Effects

DANEL AHMAN and MATIJA PRETNAR, University of Ljubljana, Slovenia

We explore asynchronous programming with algebraic effects. We complement their conventional synchronous
treatment by showing how to naturally also accommodate asynchrony within them, namely, by decoupling
the execution of operation calls into signalling that an operation’s implementation needs to be executed,
and interrupting a running computation with the operation’s result, to which the computation can react by
installing interrupt handlers. We formalise these ideas in a small core calculus, called Aze. We demonstrate the
flexibility of Az using examples ranging from a multi-party web application, to preemptive multi-threading, to
remote function calls, to a parallel variant of runners of algebraic effects. In addition, the paper is accompanied
by a formalisation of A,’s type safety proofs in AGpa, and a prototype implementation of Az in OCaMmL.

CCS Concepts: » Theory of computation — Concurrency; Program constructs; Program semantics.

Additional Key Words and Phrases: algebraic effects, asynchrony, concurrency, interrupt handling, signals.

ACM Reference Format:
Danel Ahman and Matija Pretnar. 2021. Asynchronous Effects. Proc. ACM Program. Lang. 5, POPL, Article 24
(January 2021), 28 pages. https://doi.org/10.1145/3434305

1 INTRODUCTION

Effectful programming abstractions are at the heart of many modern general-purpose programming
languages. They can increase expressiveness by giving access to first-class continuations, but often
simply help users to write cleaner code, e.g., by avoiding having to manage a program’s memory
explicitly in state-passing style, or getting lost in callback hell while programming asynchronously.
An increasing number of language designers and programmers are starting to embrace algebraic
effects, where one uses algebraic operations [Plotkin and Power 2002] and effect handlers [Plotkin
and Pretnar 2013] to uniformly and user-definably express a wide range of effectful behaviour,
ranging from basic examples such as state, rollbacks, exceptions, and nondeterminism [Bauer
and Pretnar 2015], to advanced applications in concurrency [Dolan et al. 2018] and statistical
probabilistic programming [Bingham et al. 2019], and even quantum computation [Staton 2015].
While covering many examples, the conventional treatment of algebraic effects is synchronous
by nature. In it effects are invoked by placing operation calls in one’s code, which then propagate
outwards until they trigger the actual effect, finally yielding a result to the rest of the computation
that has been waiting the whole time. While blocking the computation is indeed sometimes needed,
e.g., in the presence of general effect handlers that can execute their continuation any number of
times, it forces all uses of algebraic effects to be synchronous, even when this is not necessary, e.g.,
when the effect involves executing a remote query to which a response is not needed (immediately).
Motivated by the recent interest in the combination of asynchrony and algebraic effects [Dolan
et al. 2018; Leijen 2017], we explore what it takes (in terms of language design, safe programming
abstractions, and a self-contained core calculus) to accompany the synchronous treatment of
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ABSTRACT. We explore asynchronous programming with algebraic effects. We complement
their conventional synchronous treatment by showing how to naturally also accommodate
asynchrony within them, namely, by decoupling the execution of operation calls into
signalling that an operation’s implementation needs to be executed, and interrupting a
running computation with the operation’s result, to which the computation can react by
installing interrupt handlers. We formalise these ideas in a small core calculus, called
Aw. We demonstrate the flexibility of A using examples ranging from a multi-party web
application, to preemptive multi-threading, to remote function calls, to a parallel variant
of runners of algebraic effects. In addition, the paper is accompanied by a formalisation of
Ax’s type safety proofs in AcpAa, and a prototype implementation of A, in QCAML.

1. INTRODUCTION

Effectful programming abstractions are at the heart of many modern general-purpose program-
ming languages. They can increase expressiveness by giving access to first-class continuations,
but often simply help users to write cleaner code, e.g., by avoiding having to manage a
program’s memory explicitly in state-passing style, or getting lost in callback hell while
programming asynchronously.

An increasing number of language designers and programmers are starting to embrace
algebraic effects, where one uses algebraic operations [PP02] and effect handlers [PP13] to
uniformly and user-definably express a wide range of effectful behaviour, ranging from basic
examples such as state, rollbacks, exceptions, and nondeterminism [BP15], to advanced
applications in concurrency [DEHT18] and statistical probabilistic programming [BCI*19],
and even quantum computation [Stal5].

While covering many examples, the conventional treatment of algebraic effects is syn-

chronous by nature. In it effects are invoked by placing operation calls in one’s code, which

Key words and phrases: algebraic effects, asynchrony, concurrency, interrupt handling, signals.

" This paper is an extended version of our previous work [AP21], which simplifies the meta-theory, removes
the reliance on general recursion for reinstallable interrupt handlers, extends the calculus with higher-order
interrupt payloads and dynamic process creation, and strengthens the examples of application.
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work supported by the Air Force Office of Scientific Research under awards number FA9550-17-1-0326 and
FA9550-21-1-0024.
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