SPLS, 7 Jun 2023, University of the West of Scotland

ASYNCHRONOUS
OPERATIONS

Danel Ahman Matija Pretnar

University of Ljubljana, Slovenia

THE IDEA

M ~w> My > My M,

M > My > Myw> My w> M

Top lres

Top lres

Top lres

MIW)MS

Treq
Ml W)MS

Treq
My M~ M,

Treq
M ~w> M > My > My

Treq
My~ M ~w> My > My M,

Treq
M ~w> M > My > My

Treq lresp
M ~w> M > My > My

Treq lresp
M ~w> M > My > My

LY

M,

MIW)MW

lreq
Ml > MW

lreq
My ~w> M > Mp

lreq
My ~w> M > Mpw-:»MS

lreq Tresp
My ~w> M > Mp w~ M

lreq Tresp
My ~w> M > Mpw-:»MS w M,

l’StOp

l’StOp
M +w> My w> MW2

l’StOp lgo
M +w> My w> MW2

l’StOp lgo

l’StOp lgo

Ttick

Ttick

Ttick Ttoc:k

Ttick Ttoc:k

Ttick Ttoc:k Ttic:k

Ttick Ttoc:k Ttic:k

Ttick Ttoc:k Ttic:k Ttoc:k

Ttick Ttoc:k Ttic:k Ttoc:k
M > Mo w> My ~w> My > M,

THE IDEA

CORE
CALCULUS
fun(x: X)»M VW
returnV letx=MinN

(fun (x: X) > M)V w» M[V/x]
let x = (return V) In N ~» N|[V/x]

M ~» N
E|M] ~» &[N}

é = |] letx=&InN

CORE
CALCULUS
fun(x: X)»M VW
returnV letx=MinN

OUTGOING
SIGNALS

Top(V,M)

letx=(Top(V,M)) InN
w Top(V,let x =M in N)

R
1

Top(V, &)

letx=(Top(V,M)) InN
w Top(V,let x =M in N)

E = .- Top(V, &)

ne bound
variable

OUTGOING
SIGNALS

Top(V,M)

INCOMING
INTERRUPTS

Lop(V,M)

lop(V,return W) w return W

Lop(V, Top"(W,M)) ~ Top (W, lop(V,M))

E = .- lop(V, &)

INCOMING
INTERRUPTS

Lop(V,M)

INTERRUPT

HANDLERS
promise (opx— M)asp inN

let x = (promise (opy — M,) as p in M,) in N
~ promise (opy = M) as p in (let x =M, in N)

promise (op x — M) as pin Top’(V,N)
~ Top’(V, promise (op x — M) as p in N)

E = e promise (opx — M) aspin &

let x = (promise (opy — M,) as p in M,) in N
~ promise (opy = M) as p in (let x =M, in N)

promise (op x — M) as pin Top’(V,N)
~ Top’(V, promise (op x — M) as p in N)

E = e promise (opx — M) aspin &
bound "

variable

let x = (promise (opy — M,) as p in M,) in N
W}promise (opy = M) as pin (let x =M, in N)
h atgebrait‘:i&v

promise (op x — M) as pin Top’(V,N)
~ Top’(V, promise (op x — M) as p in N)

E = e promise (opx — M) aspin &
bound "

variable

let x = (promise (opy — M,) as p in M,) in N
W}promise (opy = M) as pin (let x =M, in N)
h atgebrait‘:&&v
promise (op x — M) as pin Top’(V,N)
~ 1 op’(V, promise (op x = M) as p in N)

A t‘:‘ammuh&wi&v

E = e promise (opx — M) aspin &
bound "

variable

L op (V,promise (op x — M) as p in N)
w let p = M|V/x] in | op(V,N)

}op’(V, promise (op x = M) as p in N)
+~ promise (op x — M) as p in | op’(V,N)

L op (V,promise (op x — M) as p in N)
P A let p = M[V/x] in | op(V,N)
“Mdi.ms)”

op’(V, promise (op x — M) as p iIn N)
promise (op x = M) as p in | op’(V,N)

INTERRUPT

HANDLERS
promise (opx— M)asp inN

AWAITING
HNOLINIEN

V)

await V until (x) in M

await (V) until (x) in M ~» M[V/x]

let x = (await V until {(y) in M) in N
~ await V until (y) in (let x = M in N)

L op (V,await W until (x) in M)
~ await W until (x) in | op (V, M)

await (V) until (x) in M ~» M[V/x]

let x = (await V until (y) in M) in N
~ await V until (y) in (let x =M in N)

h algebraicity

L op (V,await W until (x) in M)
~ await W until (x) in | op (V, M)

~ “handling”

AWAITING
HNOLINIEN

V)

await V until (x) in M

[FV:X
I'EM: X!'€

[Lx: X, I"Fx: X

I'E(O:1

x: XFM:Y!I€

'Ffun(x: X))~ M:X-> Y€

['FV:X->Y!€¥ I'HFW: X
I'FVW: Y€

I'FV: X
I'FreturnV: X!€

['EM: X!¢€ [x: XEN:YI¥

['Fletx=MinN:Y!€

I'EFV:X
['E (V) (X)

['FV:(X) [Lx:XHFM: Y€

['F await Vuntil (x) in M : Y€

L, = {ping — ({pong}, D)}
L, = {ping = ({pong}.1,)}

{stop — (@, 180 — (O, lm)})}

b

op € 0 I'EV:A, I'EM: X! (o,1)

I'F Top(V,M) : X!(0,1)

(op) =€
[x:Ag M (X)!€
[,p:(X)EN:Yl(o,1)

[+ promise (opx+— M)aspinN: Y!(o,1)

1—WI_V:AOp I'FM: X1€
[+ Lop(V,M): X!(op| %)

U ,, , U’ — /, /
opl (0,1) = {(0 ¢ Z‘OP#Op 1) 1(op) = (0, 1)

(0,1) otherwise

progress
=M : X!€
— M-~ M Vv Mistinal

I'-M: X' AN M-w»M
— I'-M': X!€
preservation

progress
=M : X!€
— M-~ M Vv Mistinal /

I'-M: X' AN M-w»M
— I'-M': X!€
preservation

progress
=M : X!€
— M-~ M Vv Mistinal /

I'-M: X' AN M-w»M
— '+ M:XIE /
preservation

TYPES

Il FV:X
I'M: X! (o,1)

PROCESSES

runM P || QO
Top(V,P) |op(V,P)

M -~ N P~ Q

run M « run N F|P] w» F|0]

F =11 FI||Q | P|F

top(V,%) | Lop(V,%)

run (Top(V,M)) ~» Top(V,run M)
Top(V,P) || Q~ Top(V,P| lop(V,Q))
Pl 1top(V,Q) ~ Top(V, lop(V,P)| Q)

Lop(V,run M) ~ run (| op (V,M))

Lop(V,P| Q) ~ Lop(V,P) | lop(V,Q)
Lop(V, Top"(W,P)) » top (W, lop(V,P))

demo

M. v M:

My |- (Mo (T My > My |- | ME] -] M

demo

M. v M:

My |- (Mo (T My > My |- | ME] -] M

M| -]l top(V,M) || --- || M,
w Lop(V, M) || - M;--- || L op(V,M,)

I'=M:X!(o,1)
I'Frun M : X!(o,1)

I'FP:C I'FQO:D
I'FPI||O:C| D

op € signals(C) I'EV:A, I'EP:C

I'F Top(V,P):C

I'EV:A,, I'EP:C
I'F lop(V,P):oplC

op | (X!!(0,1)) = X!l(op | (0,1))
op | (C || D)= (oplC) |l (op!D)

progress
FP:C
— Pw P Vv Pisftinal

I'EFP:C A PwP
— ' P':C
preservation

progress
FP:C

— Pw P Vv Pisftinal /

I'EFP:C A PwP
— ' P':C
preservation

progress
FP:C

— Pw P Vv Pisftinal /

I'EFP:C A PwP,
— ' P':C
preservation

Top(V,P) || Q ~ Top(V,P | lop(V,Q))

additional effects of
triggered handlers

1op(V,P) || Q « Top(V,P || Lop (V,0))

X!1(o,1) ~ X!(0,1)

X!lops | (0,1) ~ X!lops | (op | (0,1))

C~C D~D
C||D~ C'|| D

progress
FP:C
— Pw P Vv Pisftinal

I'EFP:C AN PwP
— dC".C~C" AN T'FHP:(C
preservation

progress
FP:C

— Pw P Vv Pisftinal /

I'EFP:C AN PwP
— dC".C~C" AN T'FHP:(C
preservation

progress
FP:C

— Pw P Vv Pisftinal /

I'EFP:C AN PwP
— J4C'.C~C" AN T HFRFP:C

preservation V

PROCESSES

runM P || QO
Top(V,P) |op(V,P)

EXTENSIONS

€ C 1(op) [p:(X)FN:YYo,1)
[x:Ag,r:1 = (X)N(@,{op—~ G}) F M: (X)!€

[+ promise (op xr+—= M) aspinN: Y!(o,1)

L op (V,promise (op xr +— M) as p in N)
w let p = M|V/x,R/r] in | op(V,N)

where R = fun () —~ promise (op xr — M) as p in return p

promise (op x — M) as p in Top’(V,N)
~ Top’(V, promise (op x — M) as p in N)

promise (op x — M) as in Top’(, N)
~ Top’(V, promise (op x — M) as p in N)

promise (op x — M) as in Top’(, N)
~ Top’(V, promise (op x — M) as p in N)

PROMISE VARIABLES GAN'T
ESGAPE THROUGH SIGNAL PAYLOADS

IFYOUR TYPE SYSTEM
'RESTRICTS PAYLOADS TO GROUND TYPES

A,B ::=0Db 1 0 AXB A+ B
X,Y :=A XXY X+Y
X - Y o,1) (X)
op €0 FI—V:AOP I'=M: X! (o,1)

I'F Top(V,M) : X!(0,1)

A,B ::=0Db 1 0 AXB A+ B
X,Y :=A XXY X+Y
X — Y!(o,1) (X) [X]
op €0 FI—V:AOP I'=M: X! (o,1)

I'F Top(V,M) : X!(0,1)

[X]

X ismobile or mR&TI” [AFV:X

[Lx: X, I"Fx:X ['F[V]: [X]

' V:I[X] [x: XEM:YI€
['Hunbox Vas[x]inM: Y€

unbox [V] as [x] in M ~ M[V/x]

run (spawn (M,N)) - run M || run N

[''’BAHM:X€ ['FN: Y€’
' spawn (M,N) : Y€’

let x = (spawn (M, M,)) In N
~ spawn (M, let x = M, in N)

promise (op xr — M) as p in spawn (N, N,)
~ spawn (N, (promise (op xr = M) as p iIn N,))

lop (V,spawn (M, N))
~ spawn (M, | op(V,N))

let x = (spawn (M, M,)) In N
~ spawn (M, let x = M, in N)
o algebraicity

promise (op xr — M) as p in spawn (N, N,)
w> Spawn (N, (promise (op xr —= M) as p in N,))

ﬁommuﬁa&v&v

lop (V,spawn (M, N))
~ spawn (M, | op(V,N))
v\“mmm\g"

EXTENSIONS

INTERESTED?

l.)

Check for

updates

Asynchronous Effects

DANEL AHMAN and MATIJA PRETNAR, University of Ljubljana, Slovenia

We explore asynchronous programming with algebraic effects. We complement their conventional synchronous
treatment by showing how to naturally also accommodate asynchrony within them, namely, by decoupling
the execution of operation calls into signalling that an operation’s implementation needs to be executed,
and interrupting a running computation with the operation’s result, to which the computation can react by
installing interrupt handlers. We formalise these ideas in a small core calculus, called Aze. We demonstrate the
flexibility of Az using examples ranging from a multi-party web application, to preemptive multi-threading, to
remote function calls, to a parallel variant of runners of algebraic effects. In addition, the paper is accompanied
by a formalisation of A,’s type safety proofs in AGpa, and a prototype implementation of Az in OCaMmL.

CCS Concepts: » Theory of computation — Concurrency; Program constructs; Program semantics.

Additional Key Words and Phrases: algebraic effects, asynchrony, concurrency, interrupt handling, signals.

ACM Reference Format:
Danel Ahman and Matija Pretnar. 2021. Asynchronous Effects. Proc. ACM Program. Lang. 5, POPL, Article 24
(January 2021), 28 pages. https://doi.org/10.1145/3434305

1 INTRODUCTION

Effectful programming abstractions are at the heart of many modern general-purpose programming
languages. They can increase expressiveness by giving access to first-class continuations, but often
simply help users to write cleaner code, e.g., by avoiding having to manage a program’s memory
explicitly in state-passing style, or getting lost in callback hell while programming asynchronously.
An increasing number of language designers and programmers are starting to embrace algebraic
effects, where one uses algebraic operations [Plotkin and Power 2002] and effect handlers [Plotkin
and Pretnar 2013] to uniformly and user-definably express a wide range of effectful behaviour,
ranging from basic examples such as state, rollbacks, exceptions, and nondeterminism [Bauer
and Pretnar 2015], to advanced applications in concurrency [Dolan et al. 2018] and statistical
probabilistic programming [Bingham et al. 2019], and even quantum computation [Staton 2015].
While covering many examples, the conventional treatment of algebraic effects is synchronous
by nature. In it effects are invoked by placing operation calls in one’s code, which then propagate
outwards until they trigger the actual effect, finally yielding a result to the rest of the computation
that has been waiting the whole time. While blocking the computation is indeed sometimes needed,
e.g., in the presence of general effect handlers that can execute their continuation any number of
times, it forces all uses of algebraic effects to be synchronous, even when this is not necessary, e.g.,
when the effect involves executing a remote query to which a response is not needed (immediately).
Motivated by the recent interest in the combination of asynchrony and algebraic effects [Dolan
et al. 2018; Leijen 2017], we explore what it takes (in terms of language design, safe programming
abstractions, and a self-contained core calculus) to accompany the synchronous treatment of

Authors’ address: Danel Ahman, danel.ahman@fmf.uni-lj.si; Matija Pretnar, matija.pretnar@fmf.uni-lj.si, University of
Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, Ljubljana, SI-1000, Slovenia,

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/1-ART24
https://doi.org/10.1145/3434305

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 24. Publication date: January 2021.

24

HIGHER-ORDER ASYNCHRONOUS EFFECTS*

DANEL AHMAN ©“ AND MATIJA PRETNAR ® %

“ University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, SI-1000 Ljubljana,
Slovenia,
e-mail address: danel.ahman@fmf.uni—lj.si, matija.pretnar@fmf.uni-1j.si

® Institute of Mathematics, Physics and Mechanics, Jadranska, 21, SI-1000 Ljubljana, Slovenia

-

ABSTRACT. We explore asynchronous programming with algebraic effects. We complement
their conventional synchronous treatment by showing how to naturally also accommodate
asynchrony within them, namely, by decoupling the execution of operation calls into
signalling that an operation’s implementation needs to be executed, and interrupting a
running computation with the operation’s result, to which the computation can react by
installing interrupt handlers. We formalise these ideas in a small core calculus, called
Aw. We demonstrate the flexibility of A using examples ranging from a multi-party web
application, to preemptive multi-threading, to remote function calls, to a parallel variant
of runners of algebraic effects. In addition, the paper is accompanied by a formalisation of
Ax’s type safety proofs in AcpAa, and a prototype implementation of A, in QCAML.

1. INTRODUCTION

Effectful programming abstractions are at the heart of many modern general-purpose program-
ming languages. They can increase expressiveness by giving access to first-class continuations,
but often simply help users to write cleaner code, e.g., by avoiding having to manage a
program’s memory explicitly in state-passing style, or getting lost in callback hell while
programming asynchronously.

An increasing number of language designers and programmers are starting to embrace
algebraic effects, where one uses algebraic operations [PP02] and effect handlers [PP13] to
uniformly and user-definably express a wide range of effectful behaviour, ranging from basic
examples such as state, rollbacks, exceptions, and nondeterminism [BP15], to advanced
applications in concurrency [DEHT18] and statistical probabilistic programming [BCI*19],
and even quantum computation [Stal5].

While covering many examples, the conventional treatment of algebraic effects is syn-

chronous by nature. In it effects are invoked by placing operation calls in one’s code, which

Key words and phrases: algebraic effects, asynchrony, concurrency, interrupt handling, signals.

" This paper is an extended version of our previous work [AP21], which simplifies the meta-theory, removes
the reliance on general recursion for reinstallable interrupt handlers, extends the calculus with higher-order
interrupt payloads and dynamic process creation, and strengthens the examples of application.

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 834146 . This material is based upon
work supported by the Air Force Office of Scientific Research under awards number FA9550-17-1-0326 and
FA9550-21-1-0024.

Preprint submitted to © D. Ahman and M. Pretnar
Logical Methods in Computer Science ©@ Creative Commons

Before
sumbitting
go throug]
LMCS che
list

Create

LMCS Git
tags for A
and Agda

O Product Solutions Open Source Pricing / Sign in

& danelahman [aeff-agda ' Public L\ Notifications % Fork 0O Yy Star 6 v

<> Code () Issues % Pullrequests () Actions [fJ Projects () Security |~ Insights

¥ master ~ ¥ 1branch ©1tag Go to file About
Agda formalisation of the AEff language
a danelahman license 71lebed9 on Oct 7, 2021) 162 commits
0J Readme
[AEff.agda merging value, computation, and process type modules 3 years ago &8 MIT license
6 stars
[AwaitingComputations.agda removing unused lemmas and better naming conventions 3 years ago w
& 3 watching
[EffectAnnotations.agda Proof-irrelevance of subtyping relations 3 years ago
% 0 forks
[Finality.agda Finality of result forms 3 years ago Report repository
[LICENSE.md license 2 years ago
[Preservation.agda Syncing a lemma annotation with the paper. Removing a spurious mu... 3 years ago Releases 1
[Y ProcessFinality.agda Tweaking the notation 3 years ago © POPL 2021
on Nov 10, 2020
[ProcessPreservation.agda Tweaking the notation 3 years ago
a ProcessProgress.agda Finality of process result forms 3 years ago
Packages
[Progress.agda Syncing names with the paper 3 years ago
No packages published
[README.md Update README.md 2 years ago
[Renamings.agda actions of renamings and substitutions for processes 3 years ago
Languages
[Substitutions.agda actions of renamings and substitutions for processes 3 years ago P E—————————————
[Types.agda Tweaking the notation 3 years ago ® Agda100.0%
:= README.md

Agda formalisation of the AEff language

Note: For the Agda formalisation of a newer version of AEff (extended with reinstallable interrupt handlers, higher-
order payloads for signals and interrupts, and dynamic process creation), see here.

¢ The formalisation has been tested with Agda version 2.6.1 and standard library version 1.3.

¢ The unicode symbols used in the source code have tested to display correctly with the DejaVu Sans Mono

O Product

Solutions

Open Source

Pricing

& danelahman [higher-order-aeff-agda ' Public

<> Code

() Issues

¥ main ~

19 Pull requests

a danelahman license

O

O 0000 0bD00 0 DL0O DO O

AEff.agda
EffectAnnotations.agda
Finality.agda
LICENSE.md
Preservation.agda
ProcessFinality.agda
ProcessPreservation.agda
ProcessProgress.agda
Progress.agda
README.md
Renamings.agda
Substitutions.agda

Types.agda

README.md

(» Actions

¥ 1branch 0 tags

@ Security |~ Insights

Go to file

b41df71 on Oct 7, 2021

removing let-rec from the core calculus

Removing a redundant mutual block

removing the separate judgement of awaiting computations (not nee...

license
removing let-rec from the core calculus
for symmetry, allow type-level spawning both in left and right

for symmetry, allow type-level spawning both in left and right

removing the separate judgement of awaiting computations (not nee...

removing the separate judgement of awaiting computations (not nee...

Update README.md
removing let-rec from the core calculus
removing let-rec from the core calculus

wip: reinstallable interrupt handlers (up to coercion rules)

¢ The core language formalised here differs from the original language as follows:

o interrupt handlers are now able to reinstall themselves (without resorting to general let-rec);

O 36 commits

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago

2 years ago

Agda formalisation of the AEff language for higher-order
asynchronous effects

o payloads of signalsfinterrupts have been generalised to allow higher-order values (by the means of modal

types);

L\ Notifications % Fork 0

About

No description, website, or topics
provided.

Readme
MIT license
1 star

3 watching

< O % 23 B

0 forks

Report repository

Releases

No releases published

Packages

No packages published

Contributors 2
0 danelahman Danel Ahman

;:’ matijapretnar Matija Pretnar

Languages

f{ Star 1

® Agda 100.0%

v

O Product Solutions Open Source Pricing / Sign in

(] matijapretnar/aeff Public L\ Notifications % Fork 3 Yy Star 10 v

<> Code () Issues % Pullrequests () Actions [fJ Projects () Security |~ Insights

¥ master ~ ¥ 3 branches ©1tag Go to file About
An interactive interpreter for
° danelahman license X 3af50c5 on Oct 7, 2021 &) 135 commits asynchronous algebraic effects
. . . D ii i
.github/workflows Fix ocamlformat version 2 years ago ¢’ matija.pretnar.info/aeff/
etc |-> ~> -> 2 years ago M Readme
&8 MIT license
examples Add dynamic creation of processes 2 years ago
¥¢ 10 stars
src Improve checking of mobile type definitions 2 years ago ® 3 watching
tests Improve checking of mobile type definitions 2 years ago % 3forks
Report repositor
web Simplify styles 3 years ago b P v
[.gitignore Provide a command-line backend 3 years ago
Releases 1
[.ocamlformat Enable OCamlFormat 3 years ago
, © POPL 2021
D LICENSE.md license 2 years ago on Nov 10, 2020
[Makefile Add testing framework 3 years ago
[README.md Update README.md 2 years ago Packages
[dune-project Switch to dune 3 years ago No packages published
:= README.md

Contributors 3

Eff :’ matijapretnar Matija Pretnar

° danelahman Danel Ahman

Install dependencies by e
QQ.S;) JanezRadescek

opam install menhir ocaml-vdom ocamlformat

and build Z&ff by running (requires OCaml >= 4.08.0) Languages

OCaml 94.3% ® HTML 3.9%
® Emacs Lisp 1.6% ® Makefile 0.2%

make

O Product Solutions Open Source Pricing / Sign in

& matijapretnar / millet Public [\ Notifications % Fork 0 Y7 Star 19 v

<> Code () Issues 7 Pullrequests (» Actions (J Security [~ Insights

¥ main ~ ¥ 4 branches © 0tags Go to file About
A ML-like pure functional language that
:’ matijapretnar Bump OCaml & ocamlformat version « f28a4ba on Nov 16, 2022 YO 43 commits can be used as a template for creating
your own language
.github/workflows Bump OCaml & ocamlformat version 7 months ago
& matija.pretnar.info/millet/
examples Initial commit 3 years ago
0J Readme
src Bump OCaml & ocamlformat version 7 months ago ¥ 19 stars
tests Check for well-formed type definitions 2 years ago &® 3 watching
web Sort out names 2 years ago ¥ 0forks
Report repository
[.gitignore Sort out names 2 years ago
[.ocamlformat Bump OCaml & ocamlformat version 7 months ago
Releases
5 Makefile Simplify test folder 2 years ago
No releases published
[README.md Bump OCaml & ocamlformat version 7 months ago
[dune-project Add initial cram tests setup 2 years ago
Packages
‘= README.md No packages published
Millet Contributors 2

. * matijapretnar Matija Pretnar
Do you, like me, test theoretical programming language concepts by building your own programming language? Do

you, like me, do it by copying and modifying your most recent language because you are too lazy to build 2 zputrle Ziga Putrle
everything from scratch? Do you, like me, end up with a mess? Then Millet is for you. It is a pure ML-like language
with simple and modular codebase that you can use as a template for your next language.

. . Languages
How to install and run Millet? gHag

OCaml 90.8% ® Perl 8.4%

Install dependencies by Other 0.8%
er 0.c%

opam install menhir ocaml-vdom ocamlformat

FUTURE WORK

EFFICIENT
INTERPRETER

EFFECT-AWARE
OPTIMISATIONS

DENOTATIONAL
SEMANTICS

SCOPED?
HANDLERS

QUESTIONS?

