STATE OF EFF

Matija Pretnar

University of Ljubljana, Slovenia

| was trying to reconstruct the history of Eff, and as far as | recall, the first version appeared in 2010.

\ E K @ f >
. \‘ . —~
8\ atics and C(anutatlﬁnf& YA
A blog abou} mathematics for compu}es = \\A \Q — 42, ; JZ\ \$ /ji
. §§ /. l\a ? \\ N/ = =4
Posts Talks Publicati “~ftware About
effe
C
t State o,
O Programming with effects |: Theory —

« How eff han operat .

oo
Progr o (lambda S fiup. ():
@ 27 Septer perati0n u Y yleld S S

[UPDATE ! (lambda S - . \new:
rn y . ° .YJ. e.ld () s 1ing language itself.

n | ideas about the algebraic
eW) » a precise connection

combined.

**Thisis a

Please b¢

Sa;ure of . (lamb -
- flnally . da g.

Installation

If you have Mercurial installed (type hg at command prompt to find out) you can get emrine-.

$ hg clone http://hg.andrej.com/eff/ eff
\

Otherwise, you may also download the latest source as a .zip or .tar.gz, or visit the repository with your browser for other versions. Eff is released under the
simplified BSD License.

To compile eff you need Ocaml 3.11 or newer (there is an incompatibility with 3.10 in the Lexer module), ocamlbuild, and Menhir (which are both likely to be bundled
with Ocaml). Put the source in a suitable directory and compile it with make to create the Ocaml bytecode executable ef f .byte. When you run it you get an interactive
shell without line editing capabilities. If you never make any typos that should be fine, otherwise use one of the line editing wrappers, such as rlwrap or ledit. A handy
shortcut ef f runs eff.byte wrapped in rlwrap.

Quntav

It waas announced on Andrej’s blog, 13 years ago almost to a day. Two interesting notes: it's name was written in lower case, and it used a Python-like syntax.

On our train ride back from the Domains workshop in Swansea, Andrej and | realised that Eff fits much better into an ML family.

Programming with Algebraic Effects and Handlers

Eff 2.0 is what appeared in the "Programming with Algebraic Effects and Handlers” paper. At this point, Eff featured dynamic generation of effect instances, inspired by

how references are created in OCaml.

After that point, the versioning becomes much more confusing. Version 3.0 appeared some time after that, but | do not know what the main difference from 2.0 was.

So let’s stick to chronological history from now onwards.

2013

EFFECT SYSTEM

In 2013, Eff got a subtyping-based effect system.

Logical Methods in Computer Science
Vol. 10(3:21)2014, pp. 1-43 Submitted Dec. 5,2013
www.Imes-online.org Published ~ Sep. 12,2014

INFERRING ALGEBRAIC EFFECTS

MATLJA PRETNAR

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
e-mail address: matijaGpretnar.info

ABSTRACT. We present a complete polymorphic effect inference algorithm for an ML-style
language with handlers of not only exceptions, but of any other algebraic cffeet such
input & output, mutable references and many others.

Our main aim is to offer the programmer a useful insight into the effectful behaviour of
progtams. Handlers help here by cutting down possible effects and the resulting lengthy
output that often plagues precise effect systems. Additionally, we present a set of motl..
ods that further simplify the displayed types, some even by deliberately hiding mforved
information from the programmer.

Though Haskell [10] fans may not think it is better to write impure programs in ML [18],
they do agree it is easier. You can insert a harmless printout without rewriting the rest
of the program, and you can combine multiple effects without a monad transformer. This
flexibility comes at a cost, though — ML types offer no insight into what effects may happen.
The suggested solution is to use an effect system [16, 29, 4, 31, 33, 3, 27], which enriches
existing types with information about effects,

An effect system can play two roles: it can be deseriptive and inform about potential
effects, and it can be prescriptive and limit the allowed ones. Tn this paper, we focus on
the former. It turns out that striking a balance between expressiveness and simplicity of a
descriptive effect system is hard. One of the bigger problems is that effects ten 1o pile up,
and if the effect system takes them all into account, we are often loft with lengthy output
listing every single effect there is.

In this paper, we present a complete inference algorithm for an expressive and simple
descriptive polymorphic effect system of Fff [2] (freely available at http://eff-lang.org),
an MLostyle language with handlers of not only exceptions, but of any other algebraic
effect [22] such as input & output, non-determinism, mutable referencos and many oth-
ers [23, 2. Handlers prove to be extremely versatile and can express stroam redirection,
{ransactional memory, backtracking, cooperative multi-threading, delimited continuations,
and, like monads, give programmers a way to define their own. And as handlors eliminate
cffects, they make the effect system non-monotone, which helps with the aboye fasne of a
snowballing output.

2012 ACM CCS: [Theory of computation]: Semantics and reasoning—Program reasoning- Program

analysis.
Key words and phrases: algebraic effects, effect handlers, effect inference, effect system.

Its inference algorithm was constraint based and used a variant of Francois Pottier's garbage collection.

2015-2016

EFFICIENT COMPILATION

In 2015, | visited Tom Schrijvers in Leuven, and we started looking at efficient evaluation of handlers.

effect Put: int —> unit
effect Get: unit —> int

let rec loop n =
if n = 0 then () else
perform (Put (perform (Get ()) + 1));
loop (n - 1)

let state_handler = handler
| effect (Put s') k = (fun _ —> k () s')
| effect (Get ()) k = (fun s —> k s s)
| _ —> (fun s —> s)

let main n =
(with state_handler handle loop n) 0

let main n =
let rec state_handler_loop m s =
if m = 0 then s
else state_handler_loop (m - 1) (s + 1)
in
state_handler_loop n 0

Tom'’s idea was to do source-level optimisations of Eff code and then to compile it down to OCaml using some sort of a monadic embedding (OCaml didn't have

effects at that point yet).

21

85

Incr

Loo, 3.3
P program Variations 2.3

State

Fig. 14, i
Relative fun-times of Loops
€Xample

Our initial results were promising, reaching performance of hand-written OCaml code.

But we ended up having too little examples for a thorough evaulation since the effect system was very fragile and every tweak either made our compilation too

conservative and thus too slow, or too agressive and ill-typed.

The first step in resolving the mess was getting rid of instances (since one could use the generativity of modules (which Eff still doesn’t have)), though even that did not

help.

2017-2019

EXPLICIT SUBTYPING

The next step was to change all the implicit subtyping coercions in Eff into explicit ones, and this was done with the help of Tom Schrijvers and his students, mostly Amr

Hany Saleh and Georgios Karachalias.

let apply_if p f x
if p x then
f X
else
X

For example, take the following Eff function.

fun p — return (fun f — return (fun z — (
do b+ pux;

if b then fx else return x

)

In fine-grain call-by-value, this gets elaborated to the following function with explicit binds and returns.

fun (p: @y — bool) — return (
fun (f : g — a3) — return (
fun (z: ay) — (
dob<+p(x> w);
if b then

(f(z>lw)) > w3
else

return (x > wy)

In the new explicitly annotated version, each variable is assigned a type, and types have to match, which is achieved through coercions. For example, the type a4 of x
doesn’t need to match the argument type a of f, but there must be an explicit coercion w1 : a1 < as witnessing the subtyping. Now, all effect information can be read

directly off the syntax.

2019-2020

EEFF

In parallel, a fork of Eff called EEFF appeared.

JEP 30, €13.27 pages, 2020. © The Author(s) 2020. Published by Cambridge University Press
doi:10.1017/50956796819000212

Local algebraic effect theories

ZIGA LUKSIC AND MATIJA PRETNAR'
Faculty of Mathematics and Physics University of Liubliana, Slovenia
77f mni-1j.si, matija.pretnarOfmf.uni-1j.si

Section 4, we presentso

" This material is based upon work s

upported by the Air Force Office of Scientific Research under award number FA9550-17.
1-0326.

i i tisfy. In EEFF, one
Th d by my PhD student Ziga Luksi¢ and was based on the work of extending the effect system with equations that the handlers need ’;o sablls y neE
is was done by m | | the j RN
| if tions that have to hold, but the compiler does not do any checks along the lines of QuickCheck or SMT solving, just prints out the oblig
can specify equati ,

. . . : |
user. If anyone is interested in helping continue this work, let me know!

MAJOR CLEANUP

With the explicit subtyping sorted out, we decided to properly implement it, and this was done mostly in 2020 with the help of my student Filip Koprivec.

let apply (expl, exp2) =
match expl.ty.term with
| Type.Arrow (tyl, drty2) —
assert (Type.equal_ty exp2.ty tyl);
{ term = Apply (expl, exp2); ty = drty2 }
| _ —> assert false

One useful technique we used were smart-constructors of typed terms, which raised an assertion fault as soon as some types did not match. This caught countless

bugs in source-level optimizations, which shuffle terms around a lot.

2021

OPTIMIZATIONS

With Eff cleaned up, it was time in 2021 to return to our initial work on optimizations.

OOPSLA

2021 OOPSLA
2021
ESOP JFP

2018 2020

This worked smoothly, and the current pipeline is as follows. After desugaring, Eff is first elaborated into an explicitly typed core language. Next, it is translated into an
OCaml-like language that features no native effects, just their monadic reification. On both languages, mostly on the core one, we perform source-level optimizations

that inline handlers, extract pure computations, ...

2022-2023

SIMPLIFYING COERCIONS

Our current work focuses on simplifying subtyping coercions.

fun (p: @y — bool) — return (
fun (f : ae — ag) — return (
fun (z: ay) — (
dob<+p(x> w);
if b then

(f(z>lw)) > w3
else

return (x > wy)

Recall that core language features explicit coercions in terms.

let apply_if wl w2 w3 w4 p f x =
p (x |> wl) >>= fun b —>

i1f b then
(f (x |> w2)) |> coer_comp w3
else

return (x |> w4)

When translating to OCaml, these coercions gain computational meaning (eg. they embed pure values into the monad), and any polymorphic coercion parameters
get translated into additional function arguments. Very simple functions have a handful of such additional arguments, while a quick-sort implementation for example,

already features a couple hundred of them, which is unacceptable.

Unfortunately, we cannot perform Francois Pottiers garbage collection because that relies on computational irrelevance of coercions and completely removes them. In
our case, coercions form part of terms and have to be replaced rather than removed. Instead we rely on heuristics such as collapsing of cycles, collapsing coercions

between parameters with singualr bounds, ... We cannot get rid of all the coercions in general, but we can for example remove all of them in Eff’s standard library or

the quick-sort example.

OPTIMISING SUBTYPING COERCIONS IN
A POLYMORPHIC CALCULUS WITH EFFECTS

FILIP KOPRIVEC © " AND MATLJA PRETNAR o

“ University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, SI-1000 Ljubljana,
Slovenia

Institute of Mathematics, Physics and Mechanics, Jadranska 19, S1.1000 Lijubljana, Slovenia
e-mail address: flip.koprivee@imfin.si
e-mail address: matija.pretnar@fnf uni-lj.si

L —————5
ABSTRACT.
Write abstract.

INTRODUCTION

Recent years have seen an increase in the number of programming languages that support | [Write key-
algebraic effect handlers [PP03, PP13]. With a widespread usage, the need for performance (Words
is becoming ever more important. And there are two main ways for achieving it: . an efficient
runtime [DWS*15, SDOW*21], or an optimising compiler [SBO20, XL21, KKPS21], which
we focus on in this paper.

Our recent work [KKPS21] has shown how an optimising compiler can take code written
using the full flexibility of handlers, infer precise information about which parts of it use
effects and which are pure, and produce code that matches conventional handcrafted one.
However, the approach tracks effect information through explicit subtyping coercions (I, (Check if tb
and for polymorphic functions, these nced to be passed around as additional parameters. | reforences
Since subtyping coercions are inferred automatically, their number grows with the size of the | are correct
program, which drastically reduces the performance. To avoid this, all polymorphic functions
need to be annotated with particular types, or monomorphised by the compiler, neither of
which is a satisfactory solution.

In this paper, we propose an algorithm that drastically, yet soundly, reduces (and often

1 limi d coercion p leading to a performance comparable

to monomorphic code. We start with an overview of the approach (Section 1) and continue
with a specification of our working language (Section 2). Afterwards, we turn to our
contributions, which are:

* Identifying requirements for a simplification algorithm phase to be correct with respect to
typing (Section 7?).

Key words and phrases: C ional effects, Optimizi ilation, Pol i ilation, Deno-
tational semantics.

This material s based upon work supported by the Air Force Office of Scientific Research wnder awards
number FA9550-17-1-0326 and FA9350-21-1-0024.

Preprintsubmited to © F. Koprivec and M. Pretnar
Logical Methods in Computer Science ® Creative Commons

: . - S
The correctness of this simplifications is established in a paper that Filip and | are submitting soon to LMC

What are the next steps for Eff?

The answer lies in Millet, a fine-grain call-by-value based ML-like language.

EFF EFF+ EEE++

AEFF++

MILLET q MILLET++

FEFF q FEFF+

A few years ago, | worked with Danel Ahman on asynchronous effects. To test our ideas, I've developed a small prototype language called Zff. | got it by taking Eff,
removing some stuff and adding some new one. Of course, during writing of Zff | corrected some mistakes present in Eff. How to port those changes back to get an
improved version of Eff? What | started is Millet, a template language featuring all the boring but useful things in a language (recursive types, records, interactive loop,
parser, lexer, desugarer, simple type-checker, interpreter, ...) which one can fork and add only the interesting bits (handlers, asynchronous operations, ...). Eff and Aff
appeared before, and now | am slowly porting them to the point where they can be considered such forks. Now, if Millet gets an additional feature (right now, a couple

of students of mine are developing a module system, a LSP, and a Wasm backend), one can “simply” merge those changes into forks. If you are researching a new

feature and want to try it out, | encourage you to take a look at Millet.

