
A CASE STUDY IN
MATHEMATICALLY INSPIRED

LANGUAGE CONSTRUCTS

Matija Pretnar

Xavier Leroy held a seminar on control structures

D O C U M E N TS E T M É D I A S

Programme

Voir aussi

Accueil / Chaires actuelles / Xavier Leroy, chaire Sciences du logiciel / Enseignements / Structures de contrôle : de « goto » aux effets
algébriques

08
FÉV
2024

→
14
MAR
2024

SÉMINAIRE

Structures de contrôle : de « goto » aux effets
algébriques

Du jeudi 8 février au
jeudi 14 mars 2024

Voir aussi :
Cours associé•
Xavier Leroy•

Unité de contrôle Jacquard pour métiers à tisser. - © Heinz Nixdorf
MuseumsForum / Braun, Jan (CC BY-NC-SA)

Télécharger le programme pdf (628.92 Ko)

C O U R S 09:30 - 11:00

Naissance des structures de contrôle : du « goto » à la
programmation structurée
Xavier Leroy

25
JAN
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Structures de contrôle avancées : des subroutines
aux coroutines et au parallélisme
Xavier Leroy

01
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Chassez le contrôle... : la programmation déclarative
Xavier Leroy 08

FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Comment concilier parallélisme et contrôle ?
Approches des architectures de processeurs
généralistes et graphiques
Caroline Collange

08
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Programmer ses structures de contrôle :
continuations et opérateurs de contrôle
Xavier Leroy

15
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Représentations intermédiaires pour la compilation :
s'affranchir du graphe de flot de contrôle
Delphine Demange

15
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Pratique des effets : des exceptions aux gestionnaires
d'effets
Xavier Leroy

22
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Compiling with Continuations
Andrew Kennedy 22

FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Théorie des effets : des monades aux effets
algébriques
Xavier Leroy

29
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Les continuations : cinq minutes pour les apprendre,
toute une vie pour les comprendre
Olivier Danvy

29
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Typage et analyse statique des effets
Xavier Leroy 07

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

How Mathematics Guides Effect Handlers
Matija Pretnar 07

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Logiques de programmes pour le contrôle et les effets
Xavier Leroy 14

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Design and Compilation of Efficient Effect Handlers in
the Koka Language
Daan Leijen

14
MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

Cours en relation avec le séminaire : Structures de contrôle : de « goto » aux
effets algébriques

Xavier Leroy, chaire Sciences du logiciel

Accès direct

Actualités

Presse et kit logo

Le Collège en 10 questions

Formation doctorale

Travailler au Collège de France

Marchés publics

La Lettre du Collège

Visiter le Collège de France

Nos autres sites S’inscrire à notre lettre d’information

Entrez votre adresse e-mail Envoyer

Nous suivre

Accès et contacts Mentions légales Crédits Accessibilité : non conforme

Intranet

Omnia

Salamandre

Fondation du Collège de
France

Programme PAUSE

Avenir Commun Durable

La Vie des idées

Campus de l’innovation pour
les lycées

Partager

How would the seminar series in 75 years be titled?

D O C U M E N TS E T M É D I A S

Programme

Voir aussi

Accueil / Chaires actuelles / Xavier Leroy, chaire Sciences du logiciel / Enseignements / Structures de contrôle : de « goto » aux effets
algébriques

05
FÉV
2099

→
12
MAR
2099

SÉMINAIRE

Structures de contrôle : des effets algébriques au
« ??? »

Du jeudi 5 février au
jeudi 12 mars 2099

Voir aussi :
Cours associé•
Xavier Leroy•

Unité de contrôle Jacquard pour métiers à tisser. - © Heinz Nixdorf
MuseumsForum / Braun, Jan (CC BY-NC-SA)

Télécharger le programme pdf (628.92 Ko)

C O U R S 09:30 - 11:00

Naissance des structures de contrôle : du « goto » à la
programmation structurée
Xavier Leroy

25
JAN
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Structures de contrôle avancées : des subroutines
aux coroutines et au parallélisme
Xavier Leroy

01
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Chassez le contrôle... : la programmation déclarative
Xavier Leroy 08

FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Comment concilier parallélisme et contrôle ?
Approches des architectures de processeurs
généralistes et graphiques
Caroline Collange

08
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Programmer ses structures de contrôle :
continuations et opérateurs de contrôle
Xavier Leroy

15
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Représentations intermédiaires pour la compilation :
s'affranchir du graphe de flot de contrôle
Delphine Demange

15
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Pratique des effets : des exceptions aux gestionnaires
d'effets
Xavier Leroy

22
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Compiling with Continuations
Andrew Kennedy 22

FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Théorie des effets : des monades aux effets
algébriques
Xavier Leroy

29
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Les continuations : cinq minutes pour les apprendre,
toute une vie pour les comprendre
Olivier Danvy

29
FÉV
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Typage et analyse statique des effets
Xavier Leroy 07

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

How Mathematics Guides Effect Handlers
Matija Pretnar 07

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

C O U R S 09:30 - 11:00

Logiques de programmes pour le contrôle et les effets
Xavier Leroy 14

MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

S É M I N A I R E 11:15 - 12:15

Design and Compilation of Efficient Effect Handlers in
the Koka Language
Daan Leijen

14
MAR
2 0 2 4

Structures de contrôle : de « goto » aux effets algébriques

Amphithéâtre Guillaume Budé, Site Marcelin Berthelot

Cours en relation avec le séminaire : Structures de contrôle : de « goto » aux
effets algébriques

Xavier Leroy, chaire Sciences du logiciel

Accès direct

Actualités

Presse et kit logo

Le Collège en 10 questions

Formation doctorale

Travailler au Collège de France

Marchés publics

La Lettre du Collège

Visiter le Collège de France

Nos autres sites S’inscrire à notre lettre d’information

Entrez votre adresse e-mail Envoyer

Nous suivre

Accès et contacts Mentions légales Crédits Accessibilité : non conforme

Intranet

Omnia

Salamandre

Fondation du Collège de
France

Programme PAUSE

Avenir Commun Durable

La Vie des idées

Campus de l’innovation pour
les lycées

Partager

HANDLERSHANDLERS

HANDLERS

Moggi recognised monads in the semantics of effectful computations

Computational lambda-calculus and monads
Eugenio Moggi∗Lab. for Found. of Comp. Sci.University of EdinburghEH9 3JZ Edinburgh, UKOn leave from Univ. di Pisa

Abstract

The λ-calculus is considered an useful mathematical
tool in the study of programming languages. However,
if one uses βη-conversion to prove equivalence of pro-
grams, then a gross simplification1 is introduced. We
give a calculus based on a categorical semantics for
computations , which provides a correct basis for prov-
ing equivalence of programs, independent from any
specific computational model.

Introduction
This paper is about logics for reasoning about pro-
grams, in particular for proving equivalence of pro-
grams. Following a consolidated tradition in theoret-
ical computer science we identify programs with the
closed λ-terms, possibly containing extra constants,
corresponding to some features of the programming
language under consideration. There are three ap-
proaches to proving equivalence of programs:• The operational approach starts from an oper-

ational semantics, e.g. a partial function map-
ping every program (i.e. closed term) to its result-
ing value (if any), which induces a congruence re-
lation on open terms called operational equiva-
lence (see e.g. [10]). Then the problem is to prove
that two terms are operationally equivalent.• The denotational approach gives an interpreta-
tion of the (programming) language in a math-
ematical structure, the intended model. Thenthe problem is to prove that two terms denote the
same object in the intended model.

∗Research partially supported by EEC Joint Collaboration
Contract # ST2J-0374-C(EDB).1Programs are identified with total functions from values to
values.

• The logical approach gives a class of possiblemodels for the language. Then the problem is toprove that two terms denotes the same object inall possible models.
The operational and denotational approaches give only
a theory (the operational equivalence ≈ and the set Th
of formulas valid in the intended model respectively),
and they (especially the operational approach) deal
with programming languages on a rather case-by-case
basis. On the other hand, the logical approach gives
a consequence relation ⊢ (Ax ⊢ A iff the formula A is
true in all models of the set of formulas Ax), which
can deal with different programming languages (e.g.
functional, imperative, non-deterministic) in a rather
uniform way, by simply changing the set of axioms
Ax, and possibly extending the language with new
constants. Moreover, the relation ⊢ is often semide-
cidable, so it is possible to give a sound and complete
formal system for it, while Th and ≈ are semidecidable
only in oversimplified cases.We do not take as a starting point for proving equiv-
alence of programs the theory of βη-conversion, which
identifies the denotation of a program (procedure) of
type A → B with a total function from A to B, since
this identification wipes out completely behaviours like
non-termination, non-determinism or side-effects, that
can be exhibited by real programs. Instead, we pro-
ceed as follows:
1. We take category theory as a general theory of

functions and develop on top a categorical se-
mantics of computations based on monads.2. We consider how the categorical semantics shouldbe extended to interpret λ-calculus.At the end we get a formal system, the computational

lambda-calculus (λc-calculus for short), for proving
equivalence of programs, which is sound and com-
plete w.r.t. the categorical semantics of computations.

1

The initial specification was taken to be mathematically more natural

The methodology outlined above is inspired by [13]2,

and it is followed in [11, 8] to obtain the λp-calculus.

The view that “category theory comes, logically, be-

fore the λ-calculus” led us to consider a categorical

semantics of computations first, rather than to mod-

ify directly the rules of βη-conversion to get a correct

calculus.
A type theoretic approach to partial functions and

computations is attempted in [1] by introducing a type

constructor Ā, whose intuitive meaning is the set of

computations of type A. Our categorical semantics is

based on a similar idea. Constable and Smith, how-

ever, do not adequately capture the general axioms for

computations (as we do), since they lack a general no-

tion of model and rely instead on operational, domain-

and recursion-theoretic intuition.

1 A categorical semantics of

computations

The basic idea behind the semantics of programs de-

scribed below is that a program denotes a morphism

from A (the object of values of type A) to TB (the

object of computations of type B).

This view of programs corresponds to call-by-value

parameter passing, but there is an alternative view of

“programs as functions from computations to compu-

tations” corresponding to call-by-name (see [10]). In

any case, the real issue is that the notions of value and

computation should not be confused. By taking call-

by-value we can stress better the importance of values.

Moreover, call-by-name can be more easily represented

in call-by-value than the other way around.

There are many possible choices for TB correspond-

ing to different notions of computations, for instance

in the category of sets the set of partial computa-

tions (of type B) is the lifting B + {⊥} and the set of

non-deterministic computations is the powerset P(B).

Rather than focus on specific notions of computations,

we will identify the general properties that the object

TB of computations must have. The basic require-

ment is that programs should form a category, and

the obvious choice for it is the Kleisli category for a

monad.

Definition 1.1 A monad over a category C is a

triple (T, η, µ), where T : C → C is a functor, η: IdC
.→

2“I am trying to find out where λ-calculus should come from,

and the fact that the notion of a cartesian closed category is a

late developing one (Eilenberg & Kelly (1966)), is not relevant

to the argument: I shall try to explain in my own words in the

next section why we should look to it first”.

T and µ: T 2 .→ T are natural transformations and the

following equations hold:

• µTA; µA = T (µA); µA

• ηTA; µA = idTA = T (ηA); µA

A computational model is a monad (T, η, µ) satis-

fying the mono requirement: ηA is a mono for every

A ∈ C.

There is an alternative description of a monad (see

[7]), which is easier to justify computationally.

Definition 1.2 A Kleisli triple over C is a triple

(T, η, ∗), where T : Obj(C) → Obj(C), ηA: A → TA,

f∗: TA → TB for f : A → TB and the following equa-

tions hold:

• η∗A = idTA

• ηA; f∗ = f

• f∗; g∗ = (f ; g∗)∗

Every Kleisli triple (T, η, ∗) corresponds to a monad

(T, η, µ) where T (f : A → B) = (f ; ηB)∗ and µA =

id∗
TA.

Intuitively ηA is the inclusion of values into compu-

tations and f∗ is the extension of a function f from

values to computations to a function from computa-

tions to computations, which first evaluates a compu-

tation and then applies f to the resulting value. The

equations for Kleisli triples say that programs form

a category, the Kleisli category CT , where the set

CT (A, B) of morphisms from A to B is C(A, TB), the

identity over A is ηA and composition of f followed

by g is f ; g∗. Although the mono requirement is very

natural there are cases in which it seems appropriate

to drop it, for instance: it may not be satisfied by the

monad of continuations.

Before going into more details we consider some ex-

amples of monads over the category of sets.

Example 1.3 Non-deterministic computations:

• T () is the covariant powerset functor, i.e. T (A) =

P(A) and T (f)(X) is the image of X along f

• ηA(a) is the singleton {a}

• µA(X) is the big union ∪X

Computations with side-effects:

• T () is the functor (× S)S , where S is a

nonempty set of stores . Intuitively a computa-

tion takes a store and returns a value together

with the modified store.

The methodology outlined above is inspired by [13] 2,

and it is followed in [11, 8] to obtain the λp-calculus.

The view that “category theory comes, logically, be-

fore the λ-calculus” led us to consider a categorical

semantics of computations first, rather than to mod-

ify directly the rules of βη-conversion to get a correct

calculus.A type theoretic approach to partial functions and

computations is attempted in [1] by introducing a type

constructor Ā, whose intuitive meaning is the set of

computations of type A. Our categorical semantics is

based on a similar idea. Constable and Smith, how-

ever, do not adequately capture the general axioms for

computations (as we do), since they lack a general no-

tion of model and rely instead on operational, domain-

and recursion-theoretic intuition.
1 A categorical semantics of

computations
The basic idea behind the semantics of programs de-

scribed below is that a program denotes a morphism

from A (the object of values of type A) to TB (the

object of computations of type B).

This view of programs corresponds to call-by-value

parameter passing, but there is an alternative view of

“programs as functions from computations to compu-

tations” corresponding to call-by-name (see [10]). In

any case, the real issue is that the notions of value and

computation should not be confused. By taking call-

by-value we can stress better the importance of values.

Moreover, call-by-name can be more easily represented

in call-by-value than the other way around.

There are many possible choices for TB correspond-

ing to different notions of computations, for instance

in the category of sets the set of partial computa-

tions (of type B) is the lifting B + {⊥} and the set of

non-deterministic computations is the powerset P(B).

Rather than focus on specific notions of computations,

we will identify the general properties that the object

TB of computations must have. The basic require-

ment is that programs should form a category, and

the obvious choice for it is the Kleisli category for a

monad.
Definition 1.1 A monad over a category C is a

triple (T, η, µ), where T : C → C is a functor, η: IdC .→

2“I am trying to find out where λ-calculus should come from,

and the fact that the notion of a cartesian closed category is a

late developing one (Eilenberg & Kelly (1966)), is not relevant

to the argument: I shall try to explain in my own words in the

next section why we should look to it first”.

T and µ:T 2 .→ T are natural transformations and the

following equations hold:
• µTA ;µA = T (µA);µA

• ηTA ;µA = idTA = T (ηA);µA

A computational model is a monad (T, η, µ) satis-

fying the mono requirement: ηA is a mono for every

A ∈ C.
There is an alternative description of a monad (see

[7]), which is easier to justify computationally.

Definition 1.2 A Kleisli triple over C is a triple

(T, η, ∗), where T : Obj(C) → Obj(C), ηA :A → TA,

f ∗:TA → TB for f :A → TB and the following equa-

tions hold:
• η ∗

A = idTA• ηA ; f ∗ = f• f ∗; g ∗ = (f ; g ∗)∗
Every Kleisli triple (T, η, ∗) corresponds to a monad

(T, η, µ) where T (f :A → B) = (f ; ηB)∗ and µA =

id ∗
TA .

Intuitively ηA is the inclusion of values into compu-

tations and f ∗ is the extension of a function f from

values to computations to a function from computa-

tions to computations, which first evaluates a compu-

tation and then applies f to the resulting value. The

equations for Kleisli triples say that programs form

a category, the Kleisli category CT , where the set

CT (A,B) of morphisms from A to B is C(A, TB), the

identity over A is ηA and composition of f followed

by g is f ; g ∗. Although the mono requirement is very

natural there are cases in which it seems appropriate

to drop it, for instance: it may not be satisfied by the

monad of continuations.

Before going into more details we consider some ex-

amples of monads over the category of sets.

Example 1.3 Non-deterministic computations:

• T () is the covariant powerset functor, i.e. T (A) =

P(A) and T (f)(X) is the image of X along f

• ηA(a) is the singleton {a}
• µA(X) is the big union ∪X

Computations with side-effects:

• T () is the functor (× S) S
, where S is a

nonempty set of stores . Intuitively a computa-

tion takes a store and returns a value together

with the modified store.
• ηA(a) is (λs:S.⟨a, s⟩)

• µA(f) is (λs:S.eval(fs)), i.e. the computation

that given a store s, first computes the pair

computation-store ⟨f ′, s ′⟩ = fs and then returns

the pair value-store ⟨a, s ′′⟩ = f ′s ′.

Continuations:• T () is the functor RR ()
, where R is a nonempty

set of results . Intuitively a computation takes a

continuation and returns a result.

• ηA(a) is (λk:RA
.ka)

• µA(f) is (λk:RA
.f(λh:RRA

.hk))

One can verify for himself that other notions of compu-

tation (e.g. partial, probabilistic or non-deterministic

with side-effects) fit in the general definition of monad.

1.1 A simple language

We introduce a programming language (with existence

and equivalence assertions), where programs denote

morphisms in the Kleisli category CT corresponding

to a computational model (T, η, µ) over a category C.

The language is oversimplified (for instance terms have

exactly one free variable) in order to define its inter-

pretation in any computational model. The additional

structure required to interpret λ-terms will be intro-

duced incrementally (see Section 2), after computa-

tions have been understood and axiomatized in isola-

tion.
The programming language is parametric in a sig-

nature (i.e. a set of base types and unary command

symbols), therefore its interpretation in a computa-

tional model is parametric in an interpretation of the

symbols in the signature. To stress the fact that the

interpretation is in CT (rather than C), we use τ1 ⇀ τ2

(instead of τ1 → τ2) as arities and ≡ : τ (instead of

= :T τ) as equality of computations of type τ .

• Given an interpretation [[A]] for any base type A,

i.e. an object of CT , then the interpretation of a

type τ : : = A | T τ is an object [[τ]] of CT defined

in the obvious way, [[T τ]] = T [[τ]].

• Given an interpretation [[p]] for any unary com-

mand p of arity τ1 ⇀ τ2 , i.e. a morphism from

[[τ1]] to [[τ2]] in CT , then the interpretation of a

well-formed program x: τ ⊢ e: τ ′ is a morphism

[[x: τ ⊢ e: τ ′]] in CT from [[τ]] to [[τ ′]] defined by

induction on the derivation of x: τ ⊢ e: τ ′ (see Ta-

ble 1).

• On top of the programming language we consider

equivalence and existence assertions (see Table 2).

Remark 1.4 The let-constructor is very important se-

mantically, since it corresponds to composition in the

Kleisli category CT . While substitution corresponds

to composition in C. In the λ-calculus (let x=e in e ′) is

usually treated as syntactic sugar for (λx.e ′)e, and this

can be done also in the λc-calculus. However, we think

that this is not the right way to proceed, because it

amounts to understanding the let-constructor, which

makes sense in any computational model, in terms of

constructors that make sense only in λc-models . On

the other hand, (letx=e in e ′) cannot be reduced to

the more basic substitution (i.e. e ′[x: = e]) without

collapsing CT to C.
The existence assertion e ↓ means that e denotes a

value and it generalizes the existence predicate used in

the logic of partial terms/elements, for instance:

• a partial computation exists iff it terminates;

• a non-deterministic computation exists iff it gives

exactly one result;
• a computation with side-effects exists iff it does

not change the store.2 Extending the language

In this section we describe the additional structure re-

quired to interpret λ-terms in a computational model.

It is well-known that λ-terms can be interpreted in a

cartesian closed categories (ccc), so one expects that

a monad over a ccc would suffice, however, there are

two problems:• the interpretation of (letx=e in e ′), when e ′ has

other free variables beside x, and

• the interpretation of functional types.

Example 2.1 To show why the interpretation of the

let-constructor is problematic, we try to interpret

x1 : τ1 ⊢ (letx2=e2 in e): τ , when both x1 and x2 are

free in e. Suppose that g2 : τ1 → T τ2 and g: τ1 ×

τ2 → T τ are the interpretations of x1 : τ1 ⊢ e2: τ2

and x1 : τ1 , x2 : τ2 ⊢ e: τ respectively. If T were IdC ,

then [[x1 : τ1 ⊢ (letx2=e2 in e): τ]] would be ⟨idτ1 , g2⟩; g.

In the general case, Table 1 says that ; above is

indeed composition in the Kleisli category, therefore

⟨idτ1 , g2⟩; g becomes ⟨idτ1 , g2⟩; g ∗. But in ⟨idτ1 , g2⟩; g ∗

there is a type mismatch, since the codomain of

⟨idτ1 , g2⟩ is τ1 × T τ2, while the domain of Tg is

T (τ1 × τ2).

The methodology outlined above is inspired by [13]2,

and it is followed in [11, 8] to obtain the λp-calculus.

The view that “category theory comes, logically, be-

fore the λ-calculus” led us to consider a categorical

semantics of computations first, rather than to mod-

ify directly the rules of βη-conversion to get a correct

calculus.
A type theoretic approach to partial functions and

computations is attempted in [1] by introducing a type

constructor Ā, whose intuitive meaning is the set of

computations of type A. Our categorical semantics is

based on a similar idea. Constable and Smith, how-

ever, do not adequately capture the general axioms for

computations (as we do), since they lack a general no-

tion of model and rely instead on operational, domain-

and recursion-theoretic intuition.

1 A categorical semantics of

computations

The basic idea behind the semantics of programs de-

scribed below is that a program denotes a morphism

from A (the object of values of type A) to TB (the

object of computations of type B).

This view of programs corresponds to call-by-value

parameter passing, but there is an alternative view of

“programs as functions from computations to compu-

tations” corresponding to call-by-name (see [10]). In

any case, the real issue is that the notions of value and

computation should not be confused. By taking call-

by-value we can stress better the importance of values.

Moreover, call-by-name can be more easily represented

in call-by-value than the other way around.

There are many possible choices for TB correspond-

ing to different notions of computations, for instance

in the category of sets the set of partial computa-

tions (of type B) is the lifting B + {⊥} and the set of

non-deterministic computations is the powerset P(B).

Rather than focus on specific notions of computations,

we will identify the general properties that the object

TB of computations must have. The basic require-

ment is that programs should form a category, and

the obvious choice for it is the Kleisli category for a

monad.

Definition 1.1 A monad over a category C is a

triple (T, η, µ), where T : C → C is a functor, η: IdC
.→

2“I am trying to find out where λ-calculus should come from,

and the fact that the notion of a cartesian closed category is a

late developing one (Eilenberg & Kelly (1966)), is not relevant

to the argument: I shall try to explain in my own words in the

next section why we should look to it first”.

T and µ: T 2 .→ T are natural transformations and the

following equations hold:

• µTA; µA = T (µA); µA

• ηTA; µA = idTA = T (ηA); µA

A computational model is a monad (T, η, µ) satis-

fying the mono requirement: ηA is a mono for every

A ∈ C.

There is an alternative description of a monad (see

[7]), which is easier to justify computationally.

Definition 1.2 A Kleisli triple over C is a triple

(T, η, ∗), where T : Obj(C) → Obj(C), ηA: A → TA,

f∗: TA → TB for f : A → TB and the following equa-

tions hold:

• η∗A = idTA

• ηA; f∗ = f

• f∗; g∗ = (f ; g∗)∗

Every Kleisli triple (T, η, ∗) corresponds to a monad

(T, η, µ) where T (f : A → B) = (f ; ηB)∗ and µA =

id∗
TA.

Intuitively ηA is the inclusion of values into compu-

tations and f∗ is the extension of a function f from

values to computations to a function from computa-

tions to computations, which first evaluates a compu-

tation and then applies f to the resulting value. The

equations for Kleisli triples say that programs form

a category, the Kleisli category CT , where the set

CT (A, B) of morphisms from A to B is C(A, TB), the

identity over A is ηA and composition of f followed

by g is f ; g∗. Although the mono requirement is very

natural there are cases in which it seems appropriate

to drop it, for instance: it may not be satisfied by the

monad of continuations.
Before going into more details we consider some ex-

amples of monads over the category of sets.

Example 1.3 Non-deterministic computations:

• T () is the covariant powerset functor, i.e. T (A) =

P(A) and T (f)(X) is the image of X along f

• ηA(a) is the singleton {a}

• µA(X) is the big union ∪X

Computations with side-effects:

• T () is the functor (× S)S , where S is a

nonempty set of stores . Intuitively a computa-

tion takes a store and returns a value together

with the modified store.

In his subsequent work, a computationally natural approach was taken

INFORMATION AND COMPUTATION 93, 55-92 (199 1)

Notions of Computation and Monads
EUGENIO MOGGI*

Department of Computer Science, Unirersity of Edinburgh, Edinburgh EN9 352, UK The i.-calculus is considered a useful mathematical tool in the study of program-
ming languages, since programs can be identified with I-terms. However, if one goes
further and uses bn-conversion to prove equivalence of programs, then a gross

simplification is introduced (programs are identified with total functions from

calues to values) that may jeopardise the applicability of theoretical results, In this
paper we introduce calculi. based on a categorical semantics for computations, that
provide a correct basis for proving equivalence of programs for a wide range of

notions of computation. :i’: 199 I Academic Press. Inc.

INTRODUCTION
This paper is about logics for reasoning about programs, in particular

for proving equivalence of programs. Following a consolidated tradition in
theoretical computer science we identify programs with the closed A-terms,
possibly containing extra constants, corresponding to some features of the
programming language under consideration. There are three semantics-
based approaches to proving equivalence of programs: l The operational approach starts from an operational semantics,

e.g., a partial function mapping every program (i.e., closed term) to its
resulting value (if any), which induces a congruence relation on open terms
called operational equivalence (see e.g. Plotkin (1975)). Then the problem is
to prove that two terms are operationally equivalent. l The denotational approach gives an interpretation of the
(programming) language in a mathematical structure, the intended model.
Then the problem is to prove that two terms denote the same object in the
intended model.

l The logical approach gives a class of possible models for the
(programming) language. Then the problem is to prove that two terms
denote the same object in all possible models. The operational and denotational approaches give only a theory: the

operational equivalence z or the set Th of formulas valid in the intended
model, respectively. On the other hand, the logical approach gives a conse-

* Research partially supported by EEC Joint Collaboration Contract ST2J-0374C(EDB). 55

0890~5401/91 $3.00 CopyrIght !(? 1991 by Academic Press. Inc All rights of reproduction m any form reserved.

60 EUGENIO MOCK31

i.e., f followed by g in VT with parameter x is the program which first

evaluates the programf(x) and then feeds the resulting value as parameter

to g. At this point we can give also a simple justification for the three

axioms of Kleisli triples, namely that they are equivalent to the unit and

associativity axioms for VT:,.:

l ,f; qt=fforf: A+ TB

l q,;f*=fforf: A -+ TB

l (f; g*); h* =f; (g; h*)* forf: A -+ TB, g: B-t TC and h: C-r TD.

EXAMPLE 1.4. We go through the notions of computation given in

Example 1.1 and show that they are indeed part of suitable Kleisli triples.

. partiality TA=A.(=A+ (I})

qA is the inclusion of A into A,

iff: A+ TB, thenf*(l)=I andf*(a)=f(a) (when UEA)

l nondeterminism TA = &,(A)

qA is the singleton map UH {u}

iff: A + TB and CE TA, thenf*(c) = UIE(.f(x)

l side-effects TA = (A x S)s

ylA is the map UH (As: S. (a, s))

iff: A+ TB and CE TA, thenf*(c)=Is: S.(let (a,.~‘) =c(s) inf(u)(s’))

exceptions TA = (A + E)
qA is the injection map a H inl(u)

if f: A + TB then ,f*(inr(e)) = e (when e E E) and f*(inl(u)) = f(u) (when

UEA)
l continuations TA = R(@’

‘la is the map UH (Lk): RA.k(a))

iff: A + TB and c E TA, then f*(c) = (ik: RB.c(h: A.f(a)(k)))

l interactive input TA = (py A + y “)

qa maps a to the tree consisting only of one leaf labelled with a

iff: A + TB and c E TA, then f*(c) is the tree obtained by replacing leaves

of c labelled by a with the treef(u)

l interactive output TA = (,uy . A + (U x y))

q.+, is the map UH (a, a)
iff: A + TB, then f*((s, a)) = (S * s’, b), where f(a) = (s’, b) and s * s’

is the concatenation of s followed by s’.

Kleisli triples are just an alternative description for monads. Although

the former are easy to justify from a computational perspective, the latter

are more widely used in the literature on category theory and have the

advantage of being defined only in terms of functors and natural trans-

formations, which make them more suitable for abstract manipulation.

58

EUGENIO MOGGI A), and take as denotations of programs (of type A) the elements of TA.

In particular, we identify the type A with the object of values (of type A)

and obtain the object of computations (of type A) by applying an unary

type-constructor T to A. We call T a notion of computation, since it

abstracts away from the type of values computations may produce. There

are many choices for TA corresponding to different notions of computa-

tions.

EXAMPLE 1.1. We give few notions of computation in the category of

sets:
l partiality TA = A, (i.e., A + {I)), where I is the &verging

computation
l nondeterminism TA = Pfifin(A) l side-effects TA = (A x S)‘, where S is a set of states, e.g. a set UL

of stores or a set of input/output sequences U*
. exceptions TA = (A + E), where E is the set of exceptions

l continuations TA = RcRA’, where R is the set of results

. interactive input TA = (py. A + rU), where U is the set of charac-

ters; more explicitly TA is the set of U-branching trees with finite branches

and A-labelled leaves . interactive output TA = (sly . A + (U x y)); more explicitly TA is

(isomorphic to) U* x A. Further examples (in a category of cpos) could be given based on the

denotational semantics for various programming languages (see Schmidt

(1986), Gunter and Scott (1989), and Mosses (1989)).

Rather than focusing on a specific T, we want to find the general proper-

ties common to all notions of computation; therefore we impose as the only

requirement that programs should form a category. The aim of this section

is to convince the reader, with a sequence of informal argumentations, that

such a requirement amounts to saying that T is part of a Kleisli triple

(T, q, - *) and that the category of programs is the Kleisli category for

such a triple.
DEFINITION 1.2 (Manes, 1976). A Kleisli triple over a category Q? is a

triple (T, q, - *), where T: Obj(‘%) + Obj(%‘), qA: A + TA for A E Obj(%),

f *: TA + TB for f: A -+ TB and the following equations hold:

l q:=id,,
l qA;f*=fforf: A+TB l f *; g* = (f; g*)* for f: A -+ TB and g: B + TC.

A Kleisli satisfies the mono requirement provided nA is mono for A E %‘.

Wadler transformed the semantic notion into a programming construct

Comprehending Monads
Philip Wadler

University of Glasgow

AbstractCategory theorists invented monads in the 1960’s to concisely express certain

aspects of universal algebra. Functional programmers invented list comprehensions

in the 1970’s to concisely express certain programs involving lists. This paper shows

how list comprehensions may be generalised to an arbitrary monad, and how the

resulting programming feature can concisely express in a pure functional language

some programs that manipulate state, handle exceptions, parse text, or invoke con-

tinuations. A new solution to the old problem of destructive array update is also

presented. No knowledge of category theory is assumed.
1 Introduction
Is there a way to combine the indulgences of impurity with the blessings of purity?

Impure, strict functional languages such as Standard ML [Mil84, HMT88] and Scheme

[RC86] support a wide variety of features, such as assigning to state, handling exceptions,

and invoking continuations. Pure, lazy functional languages such as Haskell [HPW91] or

Miranda1 [Tur85] eschew such features, because they are incompatible with the advan-

tages of lazy evaluation and equational reasoning, advantages that have been described

at length elsewhere [Hug89, BW88].Purity has its regrets, and all programmers in pure functional languages will recall

some moment when an impure feature has tempted them. For instance, if a counter is

required to generate unique names, then an assignable variable seems just the ticket. In

such cases it is always possible to mimic the required impure feature by straightforward

though tedious means. For instance, a counter can be simulated by modifying the relevant

functions to accept an additional parameter (the counter’s current value) and return an

additional result (the counter’s updated value).1Miranda is a trademark of Research Software Limited.Author’s address: Department of Computing Science, University of Glasgow, G12 8QQ, Scotland. Elec-

tronic mail: wadler@cs.glasgow.ac.uk.This paper appeared in Mathematical Structures in Computer Science volume 2, pp. 461–493, 1992; copy-

right Cambridge University Press. This version corrects a few small errors in the published version. An

earlier version appeared in ACM Conference on Lisp and Functional Programming, Nice, June 1990.
1

4.1 State transformers

Fix a type S of states. The monad of state transformers ST is defined by

type ST x = S → (x , S)

mapST f x = λs → [(f x , s′) | (x , s′) ← x s]Id

unitST x = λs → (x , s)

join
ST x = λs → [(x , s′′) | (x , s′) ← x s , (x , s′′) ← x s′]Id .

(Recall the equivalence of Id -comprehensions and “let” terms as explained in Section 3.1.)

A state transformer of type x takes a state and returns a value of type x and a new state.

The unit takes the value x into the state transformer λs → (x , s) that returns x and

leaves the state unchanged. We have that

[(x , y) | x ← x , y ← y]ST = λs → [((x , y), s
′′) | (x , s′) ← x s , (y , s′′) ← y s′]I

d .

This applies the state transformer x to the state s , yielding the value x and the new state

s′; it then applies a second transformer y to the state s′ yielding the value y and the

newer state s′′; finally, it returns a value consisting of x paired with y and the final state

s′′.
Two useful operations in this monad are

fetch :: ST S

fetch = λs → (s , s)

assign :: S → ST ()

assign s′ = λs → ((), s
′).

The first of these fetches the current value of the state, leaving the state unchanged; the

second discards the old state, assigning the new state to be the given value. Here () is

the type that contains only the value ().

A third useful operation is

init :: S → ST x → x

init s x = [x | (x , s′) ← x s]Id .

This applies the state transformer x to a given initial state s ; it returns the value computed

by the state transformer while discarding the final state.

4.2 Example: Renaming

Say we wish to rename all bound variables in a lambda term. A suitable data type Term

for representing lambda terms is defined in Figure 1 (in Standard ML) and Figure 2 (in

Haskell). New names are to be generated by counting; we assume there is a function

mkname :: Int → Name

10

The proof is a simple induction on the structure of expressions. If the expression has the

form (Plus e1 e2), we have that
ro (exp SR

(Plus e1 e2))

= {unfolding exp SR}
ro [v1 + v2 | v1 ← exp SR

e1 , v2 ← exp SR
e2]SR

= {by (11)}[v1 + v2 | v1 ← ro (exp SR
e1), v2 ← ro (exp SR

e2)]ST

= {hypothesis}[v1 + v2 | v1 ← exp ST
e1 , v2 ← exp ST

e2]ST

= {folding exp ST}exp ST
(Plus e1 e2).

The other two cases are equally simple.

All of this extends straightforwardly to monads with zero. In this case we also require

that h ·zero M
= zero N, define the action of a morphism on a filter by h b = b, and observe

that (11) holds even when q contains filters.

7 More monads
This section describes four more monads: parsers, expressions, input-output, and contin-

uations. The basic techniques are not new (parsers are discussed in [Wad85, Fai87, FL89],

and exceptions are discussed in [Wad85, Spi90]), but monads and monad comprehensions

provide a convenient framework for their expression.

7.1 ParsersThe monad of parsers is given bytype Parse x = String → List (x , String)

map Parse f x = λi → [(f x , i ′) | (x , i ′) ← x i]List

unit Parse x
= λi → [(x , i)]List

join Parse x
= λi → [(x , i ′′) | (x , i ′) ← x i , (x , i ′′) ← x i ′]List.

Here String is the type of lists of Char . Thus, a parser accepts an input string and returns

a list of pairs. The list contains one pair for each successful parse, consisting of the value

parsed and the remaining unparsed input. An empty list denotes a failure to parse the

input. We have that[(x , y) | x ← x , y ← y]Parse
= λi → [((x , y), i ′′) | (x , i ′) ← x i , (y , i ′′) ← y i ′]List.

This applies the first parser to the input, binds x to the value parsed, then applies the

second parser to the remaining input, binds y to the value parsed, then returns the pair

(x , y) as the value together with input yet to be parsed. If either x or y fails to parse its

input (returning an empty list) then the combined parser will fail as well.
20

An effect is specified with a monad

TX = 𝒫X
η(x) = {x}

c ≫= k = ⋃
x∈c

k(c)

monad

An effect is specified with a monad and additional operations

TX = 𝒫X
η(x) = {x}

c ≫= k = ⋃
x∈c

k(c)

monad

𝚏𝚊𝚒𝚕 : TX
𝚏𝚊𝚒𝚕 = {}

𝚌𝚑𝚘𝚘𝚜𝚎 : TX × TX → TX
𝚌𝚑𝚘𝚘𝚜𝚎(c1, c2) = c1 ∪ c2

effect-specific operations

Plotkin & Power recognised algebraic theories as sources of effects

Adequacy for Algebraic Eãects

Gordon Plotkin and John Power ?
Division of Informatics, University of Edinburgh, King’s Buildings,

Edinburgh EH9 3JZ, Scotland

Abstract. Moggi proposed a monadic account of computational eãects.

He also presented the computational ï-calculus, ïc, a core call-by-value

functional programming language for eãects; the eãects are obtained by

adding appropriate operations. The question arises as to whether one

can give a corresponding treatment of operational semantics. We do

this in the case of algebraic eãects where the operations are given by

a single-sorted algebraic signature, and their semantics is supported by

the monad, in a certain sense. We consider call-by-value PCF with—

and without—recursion, an extension of ïc with arithmetic. We prove

general adequacy theorems, and illustrate these with two examples: non-

determinism and probabilistic nondeterminism.

1 Introduction

Moggi introduced the idea of a general account of computational eãects, propos-

ing encapsulating them via monads T : C ! C; the main idea is that T (x) is

the type of computations of elements of x. He also presented the computational

ï-calculus ïc as a core call-by-value functional programming language for ef-

fects [21]. The eãects themselves are obtained by adding appropriate operations,

specified by a signature Ü. Moggi introduced the consideration of these opera-

tions in the context of his metalanguage ML(Ü) whose purpose is to give the

semantics of programming languages [22, 23], but which is not itself thought of

as a programming language.In our view any complete account of computation should incorporate a treat-

ment of operational semantics; this has been lacking for the monadic view. To

progress, one has to deal with the operations as they are the source of the eãects.

In this paper we give such a treatment in the case of algebraic eãects where the

operations are given by a single-sorted algebraic signature Ü; semantically such

an n-ary operation f is taken to denote a family of morphisms
fx : T (x)n Ä! T (x)parametrically natural with respect to morphisms in the Kleisli category CT ;

T is then said to support the family fx. (In [22] only naturality with respect

to morphisms in C is considered; we use the stronger assumption.) Note that

? This work has been done with the support of EPSRC grant GR/M56333: The Struc-

ture of Programming Languages: Syntax and Semantics.

Exception handling failed to be algebraic

operations
exceptions fail try

state get set

choice choose

I/O read write

probability flip

not
algebraic

Exception handling indicated a different nature

there is no assumption that the monads at hand are commutative. For C = Set,

examples are the finite powerset monad and binary choice operations; the monad

for probabilistic nondeterminism and probabilistic choice operations; and the

monad for printing and the printing operations (these are noncommutative).

As will be discussed below, there are natural analogues of these examples in

the domain-theoretic context where C = Dcppo, the category of dcppos and

continuous functions. Generally, suppose we are given a category C with finite

products and a finitary equational theory over a signature Ü. Assuming free

Ü-algebras exist, let T be the associated monad. Then every operation symbol

yields such a family, in an evident way. In the case C = Set a converse holds,

that every parametrically natural family arises as a composition of such families,

as follows, e.g., from a remark in Section 3 below.

On the other hand, for example, the exceptions monad does not support

its exception handling operation: only the weaker naturality holds there. This

monad is a free algebra functor for an equational theory, viz the one that has a

constant for each exception and no equations; however the exception handling

operation is not definable: only the exception raising operations are. Other stan-

dard monads present further diéculties. So while our account of operational

semantics is quite general, it certainly does not cover all cases; it remains to be

seen if it can be further extended.

To give an account of operational semantics we need a programming language

based on the computational ï-calculus with some basic datatypes and functions

in order to permit computation. We take as the test of our account whether a

useful general adequacy theorem can be proved. So we consider a call-by-value

PCF with algebraic eãects, an extension of the computational ï-calculus with

operations, arithmetic and recursion (see, e.g., [34, 32] for versions of call-by-

value PCF). We begin by treating the sublanguage without recursion. Section 2

presents both a small step and a (collecting) big step operational semantics;

there is also an associated evaluation function. Section 3 considers denotational

semantics and gives an adequacy theorem. The semantics is given axiomatically

in terms of a suitable class of categorical structures appropriately extending the

usual monadic view of the computational ï-calculus. This could as well have

been based on closed Freyd categories [30], and [2] is a treatment of nondeter-

minism along such lines. Section 4 considers two examples: nondeterminism and

probabilistic nondeterminism.

We consider the full language with recursion in Section 5. Small step se-

mantics is straightforward, but big step semantics presents some diéculties as

evaluation naturally yields infinite values since programs may not terminate.

We also consider an intermediate medium step semantics which is big step as re-

gards eãect-free computation and small step as regards eãects. For the semantics

we assume a suitable order-enrichment [16] in order to give a least fixed-point

treatment of recursion. This then yields an adequacy theorem, which is the main

result of the paper. One wonders if a more general treatment of recursion is pos-

sible within synthetic or axiomatic domain theory, cf. [32]. In Section 6 we revisit

the examples, but with recursion now present. Finally, in Section 7 we present

nondeterministic choice operation symbol or. Operation symbols are polymor-

phic. For instance, in modelling nondeterminism, one has the rule (suppressing

contexts):
M,N : õ

M or N : õ

for all types õ. So, in order to give a semantics for or, a minimal demand is to

model it by a natural transformation:

_x : (Tx)2 Ä! Tx

Again, for exceptions, for each exception e, one has a nullary operation sym-

bol raisee for raising the exception e and a binary one handlee for handling

e. Similar computationally natural operations exist for all the other examples

except, it seems, for continuations, which are accordingly beyond the scope of

this paper. One should note that in such cases as interactive input/output and

state, these operations may be infinitary (see below).

Moggi’s computational metalanguage does contain operations, and his pa-

per [14] includes semantics for them, but he only demanded naturality of the

operations in C, and he did not develop a body of theory in support of that se-

mantics. Here, by demanding the stronger coherence condition of parametrised

naturality in CT , we provide a notion of algebraic operations, which we support

by equivalence theorems to indicate definitiveness of the axioms, and which are

further supported by our development of a unified operational semantics in [20].

In all cases we can go further, taking the monad T to be generated by the

operations subject to accompanying equations; this idea is explored in [22, 7].

Of the various operations, handle is of a diãerent computational character

and, although natural, it is not algebraic. Andrzej Filinski (personal communi-

cation) describes handle as a deconstructor, whereas the other operations are

constructors (of eãects). In this paper, we make the notion of constructor precise

by identifying it with the notion of algebraic operation.

Algebraic operations are, in the sense we shall make precise, a natural gen-

eralisation, from Set to an arbitrary symmetric monoidal V-category C with

cotensors, of the usual operations of universal algebra, taking T to be a strong

V-monad on C. The key point is that the operations:

ãx : (Tx)v Ä! (Tx)w

(where (Ä)v denotes cotensor with an object v of V) are parametrically natural

in the Kleisli V-category CT . Enrichment allows us to employ complex arities,

i.e., objects of V , as in the case of local state—see below. (Enrichment by, e.g.,

V = !Cpo allows us to handle recursion, cf [1], but that is a rather diãerent

matter, not involving complex arities; here !Cpo is the category of small

!-cpos, i.e, the category of posets with sups of !-chains.) Parametrisation allows

us to model open terms. And naturality in the Kleisli category means that the

operations commute with evaluation contexts. In this paper, we do not make use

of the possibility of V , C, and Set all being diãerent, but it does seem to us to

be the mathematically natural general level at which to formulate our results.

Mathematics was already suggesting unrevealed constructs

?
constructors deconstructors

exceptions fail try

state get set

choice choose

I/O read write

probability flip

In fact, a suitable interpretation was there all along

Countable Lawvere Theories andComputational Effects

John Power1 ,2
Laboratory for the Foundations of Computer Science, University of Edinburgh, King’s Buildings,

Edinburgh EH9 3JZ, SCOTLAND

Abstract

Lawvere theories have been one of the two main category theoretic formulations of universal algebra, the

other being monads. Monads have appeared extensively over the past fifteen years in the theoretical

computer science literature, specifically in connection with computational effects, but Lawvere theories have

not. So we define the notion of (countable) Lawvere theory and give a precise statement of its relationship

with the notion of monad on the category Set. We illustrate with examples arising from the study of

computational effects, explaining how the notion of Lawvere theory keeps one closer to computational

practice. We then describe constructions that one can make with Lawvere theories, notably sum, tensor,

and distributive tensor, reflecting the ways in which the various computational effects are usually combined,

thus giving denotational semantics for the combinations.Keywords: mathematical operational semantics, modularity, timed transition systems, comonads,

distributive laws

1 Introduction
Historically, there have been two main category theoretic formulations of universal

algebra. The earlier was by Bill Lawvere in his doctoral thesis in 1963 [16]. Nowa-

days, his central construct is usually called a Lawvere theory, more prosaically a

single-sorted finite product theory [1,2]. The notion of Lawvere theory axiomatises

the notion of the clone of an equational theory. So every equational theory gener-

ates a Lawvere theory, and every Lawvere theory is generated by an infinite class of

equational theories, i.e., all those equational theories for which it forms the clone.

The notion of equational theory can in turn be given a category-theoretic formu-

lation in terms of the notion of a single-sorted finite product sketch, the notion of

sketch having been introduced by Ehresmann [1,2,5].
1 This work is supported by EPSRC grant GR/586372/01: A Theory of Effects for Programming Languages.

2 Email: ajp@inf.ed.ac.uk

Electronic Notes in Theoretical Computer Science 161 (2006) 59–71

1571-0661 © 2006 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.04.025
Open access under CC BY-NC-ND license.

coproducts. Since ℵ1 has countable coproducts, it is immediate that the opposite

category ℵ
op
1 has countable products.

Definition 2.2 A countable Lawvere theory consists of a small category L with

countable products and a strict countable-product preserving identity-on-objects

functor I : ℵ
op
1 −→ L. A map of countable Lawvere theories from L to L′ is a strict

countable-product preserving functor from L to L′ that commutes with I and I′.

So the objects of any countable Lawvere theory L are exactly the objects of

ℵ1, and every function between such objects yields a map in L. One often refers

to the maps of a countable Lawvere theory as operations. Trivially, the definitions

of countable Lawvere theory and map between them yield a category Lawc, with

composition given by ordinary composition of functors. Note that in the definition

of countable Lawvere theory, I need not be an inclusion.

Example 2.3 There is a Lawvere theory Triv that is equivalent to the unit cate-

gory 1: its objects are the objects of ℵ1, and there is one arrow from any object to

any other object. The functor I is the identity-on-objects but is trivial on maps.

That is a useful example for us in constructing counter-examples to natural

conjectures. Although trivial, it is important to the structure of the category Lawc

as it is the terminal object of Lawc, therefore corresponding to the terminal object

of Mndc, which is the monad sending every set to 1. Despite this example, it is

generally harmless to pretend that I is faithful, as it is in all examples of primary

interest. For most mathematical purposes, one understands a countable Lawvere

theory by study of its models.

Definition 2.4 A model of a countable Lawvere theory L in any category C with

countable products is a countable-product preserving functor M : L −→ C.

Definition 2.5 For any countable Lawvere theory L and any category C with

countable products, the category Mod(L,C) is defined to have objects given by all

models of L in C, with maps given by all natural transformations between them.

The semantic category C of primary interest is Set. So consider a model M of

a countable Lawvere theory L in Set. The set M1 determines Mn up to coherent

isomorphism for every n in L: for M preserves countable products of L, equivalently

of ℵ
op
1 , these are countable coproducts of ℵ1, which are given by cardinal sum, and

so Mn must be the product of n copies of M1. So, to give a model M is equivalent

to giving a set X = M1 together with, for each map of the form f : m −→ 1 in

L, a function from Xm to X, subject to the equations given by the composition

and product structure of L. This analysis routinely extends to any category C with

countable products.

The definition of map in Mod(L,C) is more subtle than it may first appear.

One can readily prove that the naturality condition implies that all natural trans-

formations between models respect countable product structure, i.e, for any nat-

ural transformation α between models M and N , and for any n in ℵ1, the map

αn : Mn −→ Nn is given by the product of n copies of α1 : M1 −→ N1. So

J. Power / Electronic Notes in Theoretical Computer Science 161 (2006) 59–71

62

to an E-indexed family of nullary operations with no equations. Note our use of the

countable set E for the codomain of the operation of the Lawvere theory; strictly

speaking we should instead have used the corresponding object of ℵ1, namely ℵ0; it

is, however, conceptually convenient to allow ourselves such minor liberties.

The monad generated by LE is TE = −+E. More generally, if C is any category

with countable powers and countable coproducts, Mod(LE , C) is equivalent to the

category of algebras for the monad − + E, where E for the E-fold copower of 1,

i.e.,
∐

E 1.

In the case of side-effects, a sketch, and hence the countable Lawvere theory, is

essentially given in [24] and is easy to describe.

Example 3.2 The countable Lawvere theory LS for side-effects, where S = V alLoc,

is the free countable Lawvere theory generated by the operations lookup : V al −→

Loc and update : 1 −→ Loc × V al subject to the seven natural equations listed

in [24], four of them specifying interaction equations for lookup and update and

three of them specifying commutation equations. Note, as in the case of exceptions,

the use of codomains, here Loc and Loc × V al, to handle indexing at the Lawvere

theory level. It is shown in [24] that this Lawvere theory corresponds to the side-

effects monad. More generally, if C is any category with countable powers and

copowers then, slightly generalising the result in [24], Mod(LS , C) is equivalent to

the category of algebras for the monad (S × −)S where we write (S × −) for the

S-fold copower
∐

S −, and (−)S for the S-fold power
∏

S −.

For the next example, given any endofunctor F on a category C, let µy.Fy

denote the initial F -algebra if it exists. Then, for an endofunctor Σ on a category

C with binary sums, the free Σ-algebra on an object x is µy.(Σy + x), with one

existing if and only the other does. These free algebras exist if, for example, C is

locally countably presentable and Σ has countable rank.

Example 3.3 The countable Lawvere theory LI/O for interactive input/output is

the free countable Lawvere theory generated by operations read : I −→ 1 and

write : 1 −→ O, where I is a countable set of inputs and O of outputs. The monad

for interactive input/output TI/O(X) = µY.(O × Y + Y I + X) corresponds to this

Lawvere theory: TI/O(X) is the free Σ-algebra on X, where ΣY = O × Y + Y I is

the signature functor determined by the two operations; an algebra for Σ consists

of an O-indexed family of unary operations and an I-ary operation. This is also the

form of TI/O in the more general situation where it corresponds to Mod(LS , C) for

a locally countably presentable category C.

Example 3.4 The countable Lawvere theory LN for (binary) nondeterminism is

the countable Lawvere theory freely generated by a binary operation ∨ : 2 −→ 1

subject to equations for associativity, commutativity and idempotence, i.e., the

countable Lawvere theory for a semilattice; the corresponding monad on Set is the

finite non-empty subset monad F+.

Example 3.5 The countable Lawvere theory LP for probabilistic nondeterminism

is that freely generated by [0, 1]-many binary operations +r : 2 −→ 1 subject to the

J. Power / Electronic Notes in Theoretical Computer Science 161 (2006) 59–71 65

coproducts. Since ℵ1 has countable coproducts, it is immediate that the opposite

category ℵ
op
1 has countable products.

Definition 2.2 A countable Lawvere theory consists of a small category L with

countable products and a strict countable-product preserving identity-on-objects

functor I : ℵ
op
1 −→ L. A map of countable Lawvere theories from L to L′ is a strict

countable-product preserving functor from L to L′ that commutes with I and I′.

So the objects of any countable Lawvere theory L are exactly the objects of

ℵ1, and every function between such objects yields a map in L. One often refers

to the maps of a countable Lawvere theory as operations. Trivially, the definitions

of countable Lawvere theory and map between them yield a category Lawc, with

composition given by ordinary composition of functors. Note that in the definition

of countable Lawvere theory, I need not be an inclusion.

Example 2.3 There is a Lawvere theory Triv that is equivalent to the unit cate-

gory 1: its objects are the objects of ℵ1, and there is one arrow from any object to

any other object. The functor I is the identity-on-objects but is trivial on maps.

That is a useful example for us in constructing counter-examples to natural

conjectures. Although trivial, it is important to the structure of the category Lawc

as it is the terminal object of Lawc, therefore corresponding to the terminal object

of Mndc, which is the monad sending every set to 1. Despite this example, it is

generally harmless to pretend that I is faithful, as it is in all examples of primary

interest. For most mathematical purposes, one understands a countable Lawvere

theory by study of its models.

Definition 2.4 A model of a countable Lawvere theory L in any category C with

countable products is a countable-product preserving functor M : L −→ C.

Definition 2.5 For any countable Lawvere theory L and any category C with

countable products, the category Mod(L,C) is defined to have objects given by all

models of L in C, with maps given by all natural transformations between them.

The semantic category C of primary interest is Set. So consider a model M of

a countable Lawvere theory L in Set. The set M1 determines Mn up to coherent

isomorphism for every n in L: for M preserves countable products of L, equivalently

of ℵ
op
1 , these are countable coproducts of ℵ1, which are given by cardinal sum, and

so Mn must be the product of n copies of M1. So, to give a model M is equivalent

to giving a set X = M1 together with, for each map of the form f : m −→ 1 in

L, a function from Xm to X, subject to the equations given by the composition

and product structure of L. This analysis routinely extends to any category C with

countable products.

The definition of map in Mod(L,C) is more subtle than it may first appear.

One can readily prove that the naturality condition implies that all natural trans-

formations between models respect countable product structure, i.e, for any nat-

ural transformation α between models M and N , and for any n in ℵ1, the map

αn : Mn −→ Nn is given by the product of n copies of α1 : M1 −→ N1. So

J. Power / Electronic Notes in Theoretical Computer Science 161 (2006) 59–71

62

Exception handlers are homomorphisms and they generalise to other effects

Handlers of Algebraic E↵ects

Gordon Plotkin ? and Matija Pretnar ??
Laboratory for Foundations of Computer Science,

School of Informatics, University of Edinburgh, Scotland

Abstract. We present an algebraic treatment of exception handlers and,

more generally, introduce handlers for other computational e↵ects repre-

sentable by an algebraic theory. These include nondeterminism, interac-

tive input/output, concurrency, state, time, and their combinations; in

all cases the computation monad is the free-model monad of the theory.

Each such handler corresponds to a model of the theory for the e↵ects

at hand. The handling construct, which applies a handler to a compu-

tation, is based on the one introduced by Benton and Kennedy, and is

interpreted using the homomorphism induced by the universal property

of the free model. This general construct can be used to describe previ-

ously unrelated concepts from both theory and practice.

1 Introduction

In seminal work, Moggi proposed a uniform representation of computational ef-

fects by monads [1–3]. The computations that return values from a set X are

represented by elements of TX, for a suitable monad T . Examples include excep-

tions, nondeterminism, interactive input/output, concurrency, state, time, con-

tinuations, and combinations thereof. Plotkin and Power later proposed to focus

on algebraic e↵ects, that is e↵ects that allow a representation by operations and

equations [4–6]; the operations give rise to the e↵ects at hand. All of the e↵ects

mentioned above are algebraic, with the notable exception of continuations [7],

which have to be treated di↵erently (see [8] for initial ideas).
In the algebraic approach the arguments of an operation represent possible

computations after an occurrence of an e↵ect. For example, using a binary choice

operation or :2, a nondeterministically chosen boolean is represented by the term

or(return true, return false) :Fbool, where F� stands for the type of computations

that return values of type �. The equations of the theory, for example the ones

stating that or is a semi-lattice operation, generate the free-model functor, which

is exactly the monad proposed by Moggi to model the corresponding e↵ect [9]

(modulo the forgetful functor) and which is used to interpret the type F�. The

operations are then interpreted by the model structure. When viewed as a fam-

ily of functions parametric in X, e.g., orX : TX2! TX, one obtains a so-called
? Supported by EPSRC grant GR/586371/01 and a Royal Society-Wolfson Award

Fellowship.?? Supported by EPSRC grant GR/586371/01.

The next step was implementing handlers in practice

The Programming Languages ZooThe Programming Languages Zoo
A potpourri of programming languages

> home

About the zoo

The Programming Languages Zoo is a collection of miniature programming languages
which demonstrates various concepts and techniques used in programming language
design and implementation. It is a good starting point for those who would like to
implement their own programming language, or just learn how it is done.

The following features are demonstrated:

>> functional, declarative, object-oriented, and procedural languages
>> source code parsing with a parser generator
>> keep track of source code positions
>> pretty-printing of values
>> interactive shell (REPL) and non-interactive file processing
>> untyped, statically and dynamically typed languages
>> type checking and type inference
>> subtyping, parametric polymorphism, and other kinds of type systems
>> eager and lazy evaluation strategies
>> recursive definitions
>> exceptions
>> interpreters and compilers
>> abstract machine

Installation

See the installation & compilation instructions.

The languages

The following languages are on display:

miniml_errorminiml_error
like miniml that can also abort execution

minihaskellminihaskell
lazy, functional, integers, booleans, lists, recursion, statically typed

miniprologminiprolog
logic programming, Horn clauses, unification

levylevy
call-by-push value, statically typed

commcomm
A procedural language with integer arithmetic, local variables, conditional
statements, while loops and print , compiled to simple machine code.

calccalc
integer arithmetic + , - , * , /

subsub
eager, mutable records, statically typed, subtyping

boaboa
object-oriented, eager, first-class functions, dynamic types, extensible
objects

lambdalambda
untyped λ-calculus, several evaluation strategies

calc_varcalc_var
integer arithmetic + , - , * , / , variables

minimlminiml
eager, functional, recursive functions, statically typed, compiler, abstract
machine

polypoly
lazy, functional, statically typed, parametric polymorphism, type inference

Usage

The languages are not really meant to be used. Rather, you should read and study
the source code, which is decorated with ample comments. Also, each language lang
has its own README.md and example.lang in the subdirectory src/lang .

Nevertheless, all the language are fully functioning miniature versions of real
languages and can be executed. For each language lang you can:

1. see what command-line options are available with

 ./lang.native --help

2. run the toplevel with

 ./lang.native

3. run files non-interactively with

 ./lang.native <file> <file> ...`

4. load files and enter the toplevel

 ./lang.native -l <file> -l <file> ...`

Authors

>> Andrej Bauer
>> Matija Pretnar

License

The project is open source and released under the permissive MIT license.

Contributing

New contributions are welcome. If you would like to contribute to the project,
please contact us through the GitHub project page:

>> If you discover a problem, open an issue.
>> Even better, fix the problem and submit a pull request!
>> If you would like to help but do not know how, have a look at open issues and

volunteer to resolve one.
>> If you have an idea for a new language, we will be happy to take it in. Please

note that all the languages are purposely kept simple for educational purposes.

Before you contibute a new langauge, please read these guidelines for contributing.

We wanted to do the same for handlers as Wadler did for monads

Wadler

Comprehending
monads

1991 ?

Moggi

Computational lambda-calculus
and monads

1989

Plotkin & P.

Handlers of
algebraic effects

2009

Initial version of Eff had a Python-like syntax and was untyped

Posts Talks Publications Software About

← How eff handles built-in effects Programming with effects I: Theory →

Mathematics and Computation
A blog about mathemat ics for computers

Programming with effects II: Introducing eff
27 September 2010 Matija Pretnar Computation, Eff, Guest post, Programming, Software, Tutorial

[UPDATE 2012-03-08: since this post was written eff has changed considerably. For updated information, please visit the eff page.]

**This is a second post about the programming language eff. We covered the theory behind it in a previous post. Now we turn to the
programming language itself.

Please bear in mind that eff is an academic experiment. It is not meant to take over the world. Yet. We just wanted to show that the theoretical
ideas about the algebraic nature of computational effects can be put into practice. Eff has many superficial similarities with Haskell. This is no
surprise because there is a precise connection between algebras and monads. The main advantage of eff over Haskell is supposed to be the
ease with which computational effects can be combined.

Installation

If you have Mercurial installed (type hg at command prompt to find out) you can get eff like this:

$ hg clone http://hg.andrej.com/eff/ eff

Otherwise, you may also download the latest source as a .zip or .tar.gz, or visit the repository with your browser for other versions. Eff is
released under the simplified BSD License.

To compile eff you need Ocaml 3.11 or newer (there is an incompatibility with 3.10 in the Lexer module), ocamlbuild, and Menhir (which are
both likely to be bundled with Ocaml). Put the source in a suitable directory and compile it with make to create the Ocaml bytecode executable
eff.byte. When you run it you get an interactive shell without line editing capabilities. If you never make any typos that should be fine,
otherwise use one of the line editing wrappers, such as rlwrap or ledit. A handy shortcut eff runs eff.byte wrapped in rlwrap.

Syntax

Eff has Python-like syntax, with mandatory indentation. Tabs are not allowed in indentation, only spaces. The syntax is likely to change in the
future.

The basics

Before digging into the effects, let us look at some examples of purely functional code. Throughout the post, we present the examples as if they
were written in the interactive toplevel. For example:

>>> 1 + 2
3

You can also write code in a file and run it with eff, but in this case you should use the check command described below to see some output.

First, we have basic integer arithmetic with integers of unbounded size, booleans, strings, together with the basic operations:

>>> (1379610 + 9) * 80618151420468743021
111222333444555666777888999
>>> 1 == 2
False
>>> if 1 < 2:
... "one is less" ^ " than two"
... else:
... "you must be kidding"
"one is less than two"

We have tuples, lists, variants and records, all of which can be decomposed with pattern matching:

>>> (_, a, b) = (3, 4, 5)
>>> (a, b, a + b)
(4, 5, 9)
>>> 1 :: [2, 3, 4, 5] @ [6, 7, 8]
[1, 2, 3, 4, 5, 6, 7, 8]
>>> Tree l r = Tree (Leaf 4) (Tree (Leaf 5) (Leaf 6))
>>> r
Tree (Leaf 5) (Leaf 6)
>>> z = (re = 1, im = 5)
>>> (re = x, im = _) = z
>>> x
1
>>> (a, Foo (re = x), _) = ("banana", Foo (re=4, im=10), ["some", "stuff"])
>>> (a, x)
("banana", 4)

-abstraction is written like in Python, except you can start a block after the colon:

>>> (lambda x: (x, x + 1)) 5
(5, 6)
>>> f = lambda x (y, z):
... a = x + y
... b = z + a
... a * b
>>> f 1

>>> f 1 (2, 3)
18
</pre>

You can use patterns in λ-abstractions and write `lambda p q r: e` instead of `lambda p: lambda q: lambda r: e`. Note that eff is an expression-based language. There is no `return` command to return the result, even though for clarity we wrote explicit \mathtt{return}'s the previous post.

Recursive definitions are formed with `def`. Mutually recursive definitions are formed with `def`...`and`...`and`... In the following example we also see how to write match statements:

>>> def is_odd n:
... match n:
... case 0: False
... case n: is_even (n - 1)
... and is_even n:
... if n == 0: True
... else: is_odd (n - 1)
>>> is_odd 1234
False

Recursive definitions need not define functions:

>>> def one_two_three : [1, 2, 3] @ one_two_three
>>> one_two_three
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, ...]

For more examples, look at the file `prelude.eff`, which is loaded into eff before anything else happens.

How to use effects

One of eff's built-in effects are references (mutable store). To create a new reference instance `x` with initial value 5 we use the `with` statement:

>>> with ref 5 as x:
... a = x.lookup ()
... x.update (a + 3)
... x.update (x.lookup() + x.lookup())
... x.lookup()
Warning: Implicit sequencing between L4, 15-27 and L4, 28-37
16

In the above code `ref` is a function which accepts a value and returns an effect. The `with` creates a new instance of an effect and calls it `x`. The scope of the effect is the body of the `with` statement, i.e., `x` is a _local_ effect.

You will notice that eff prints a warning when it detects an ambiguous order of execution of operations. Sometimes it thinks that a piece of code contains effects when it actually does not and prints spurious warnings. You can use `pure e` to indicate that `e` does not contain any effects. We hope to get rid of `pure` once we have a type system for eff. Yes, eff currently does not check types. It does not seem easy to come up with a good type system for eff. We have found that the lack of types invites one to try all sorts of crazy things.

From now on, we are not going to show these warnings. If you do not like them, you can turn them off by passing the option `--careless` when starting eff.

We can create and mix several instances of `ref` (can you tell how many sequencing warnings would we get?):

>>> with ref 5 as x:
... with ref 10 as y:
... a = x.lookup () + y.lookup ()
... x.update (a + y.lookup ())
... x.lookup ()
25

If only one instance of an effect is needed, we need not give it a name. So we can have one nameless global `ref` instance:

>>> with ref 5:
... update (lookup () + 7)
... lookup ()
12

How to define effects

In eff we can define our own effects with the `effect` statement:

effect e:
 operation op_1 x: h_1(x)
 operation op_2 x: h_2(x)
 ...
 return x: r(x)
 finally x: f(x)

The above code defines an effect `e` with operations $\mathtt{op}_1, \mathtt{op}_2, \ldots$ which are handled by the code h_1, h_2, \ldots, respectively. The `return` clause tells us how to handle (pure) values. The `finally` clause tells us what should be done with the value, returned from the `with` statement that uses the effect `e`. In other words, it defines a wrapper which tells us how to “run” the effect as well as how to “get out” of it (compare to Haskell's [runState](http://www.haskell.org/haskellwiki/State_Monad) for the state monad).

If you leave out the `return` or `finally` clauses it is assumed that they are identity functions.

User-defined references

Let us convert the reference example from the [first post](http://math.andrej.com/2010/09/27/programming-with-effects-i-theory/) to eff code. Since eff already has a builtin effect called `ref` we call our references `myref`:

>>> effect myref s_initial:
... operation lookup (): (lambda s: yield s s)
... operation update s_new: (lambda s: yield () s_new)
... return x: (lambda s: x)
... finally f: f s_initial

or, more concisely but equivalently:

>>> effect myref s_initial:
... operation lookup () s: yield s s
... operation update s_new s: yield () s_new
... return x s: x
... finally f: f s_initial

This is the definition of a function `myref` which maps `s_initial` to an effect. The effect has two operations, `lookup` and `update`, which are handled just like the algebraic operations \mathtt{lookup} and \mathtt{update} from the previous post. Because we use the generic effect notation we cannot refer to the continuation directly, but rather indirectly with the keyword `yield`.

Recall that a program which uses a reference of type S and returns a value of type T is in fact a map $S \to T$. The `finally` clause tells us what should be done with such a function, namely it should be applied to the initial state. In other words, `finally` is just syntactic sugar for a wrapper around the `with` statement, so

>>> with myref 5:
... some code

is equivalent to

>>> (with myref_without_finally:
... some code) 5

Let us check how our references mix with the builtin ones:

>>> with myref 100 as u:
... with ref 10 as z:
... u.update (u.lookup () + z.lookup ())
... z.update (u.lookup () + z.lookup ())
... (u.lookup (), z.lookup ())
(110, 120)

Exactly as we would have expected. We can create any number of local references. We can even store them in a list, and they will work correctly as long as they do not escape the scope of their declaration.

Choice

As the next example we define a choice operation. In general such an operation is given some values (in our case two, but it could be a list) and it is supposed to choose one of them. There are many different criteria according to which we might make a choice: randomly, non-deterministically, so that the end result is minimized, etc.

Let us first define a boring choice, which always chooses the first value:

>>> effect left_choice:
... operation choose (a, _): yield a
>>> with left_choice:
... x = choose (3, 2)
... y = choose (5, 10)
... x + y
8

Observe how we used `yield` to pass the result of the operation back to the continuation. It may take a bit of getting used to `yield` if you are not familiar with continuations.

A more interesting kind of choice is “magical” choice with always selects that value which leads to the least possible end result:

>>> effect min_choice:
... operation choose (a, b):
... l = yield a
... r = yield b
... min l r
>>> with min_choice:
... x = choose (3, 2)
... y = choose (5, 10)
... x + y
7

Notice how we used `yield` twice in order to test both possibilities: what happens if we choose `a` and what happens if we choose `b`. The end result is a kind of depth-first search. Another test case:

>>> with min_choice:
... x = choose (3, 4)
... y = choose (5, 6)
... z = choose (10, 1)
... x * x - y * z * x + z * z * z - y * y * x
-151

It should be possible to write all sorts of “choose” and “search” operators in eff that allow the programmer to write backtracking code with seemingly magical choice operators.

What if we wanted to collect _all_ possible results rather than just a particular one? No problem:

>>> effect all_choices:
... operation choose (a, b):
... l = yield a
... r = yield b
... l @ r
... return v: [v]
>>> with all_choices:
... x = choose (3, 2)
... y = choose (5, 10)
... x + y
[8, 13, 7, 12]

In this case, the operation first yields its left argument to the continuation and gets back a list `l` of possible results. It repeats the same with its right argument to get back a list `r`, and returns the concatenated list `l @ r`. The `return` clause tells us that a pure value gives just one choice.

Handlers

When we define an effect we tell how its operations are handled by default. We may also wrap a piece of code in a handler that temporarily redefines the behavior of operations. Here is a handler which intercepts lookups to reference `z` and always adds `1` to the actual value:

>>> with ref 10 as z:
... y = z.lookup ()
... handle:
... z.update 100
... x = z.lookup ()
... (x, y)
... with:
... operation z.lookup ():
... a = z.lookup () # this calls the outer lookup
... yield (a + 1)
(101, 10)

Exceptions

Eff does not have builtin exceptions. The \mathtt{fail} exception could be defined like this:

>>> effect maybe:
... operation fail(): Nothing
... return x: Just x
...
>>> with maybe:
... a = 5
... b = 6
... fail ()
... a + b
...
Nothing
>>> with maybe:
... a = 5
... b = 6
... a + b
...
Just 11

We are reminded of Haskell's Maybe monad, and not without reason. The cool thing is that exceptions act like exceptions within their scope and like optional values outside the scope. Thus we can handle exceptions inside their scope just as expected:

>>> with maybe:
... a = 5
... handle:
... b = 6
... fail ()
... a + b
... with:
... operation fail(): 42
...
Just 42

We can also have a version of `maybe` with default values:

>>> effect default x:
... operation fail(): x
...
>>> with default 42:
... a = 5
... b = 6
... fail ()
... a + b
...
42
>>> with default 42:
... a = 5
... b = 6
... a + b
...
11

I/O

Eff has a builting effect `io` with operations `print_value`, `print_string` and `read_string` which print to standard output and read from standard input. If you want to print something out you should not forget to first tell eff that you want to use the `io` effect:

>>> print_string "Hello, world!"
Runtime error: Name print_string is not defined. (L1, 1-12)
>>> with io: print_string "Hello, world!"
...
Hello, world!
()

Having to write “`with io`” all the time is annoying, so eff allows you to declare globally in a file (but not in the interactive shell) that you will use `io`:

with io ...

This is the same as writing `with io:` and indenting the rest of the file. Of course, there is nothing special about `io`. You can declare any effect instance for the rest of the file in the same way.

If you are using `io` for printing debugging information, don't! Eff has a special command `check` just for that purpose:

>>> check: "Hello, world!"
...
"Hello, world!"
>>> check: 1 + 2 + 3
...
6
>>> with io:
... check: print_string "Hello, world"
...
Operation print_string "Hello, world" (global)
()

The last example requires explanation: since `check` is intended for debugging it never handles operations. Instead it tells you that an operation occurred.

Let us write an effect which redirects output to a string:

>>> effect print_to_string:
... operation print_string x c: yield () (c ^ x)
... return () c: c
... finally f: f ""

We can use it to collect output to a string:

>>> a = (with print_to_string:
... print_string "Hello, world!"
... print_string "And good bye.")
...
>>> a
"Hello, world!And good bye."

For some reason people find the following example surprising:

>>> with io:
... print_string "Please enter your name:"
... response = handle with print_to_string:
... print_string "Hello "
... print_string (read_string ())
... print_string "!"
... print_string response
...
Please enter your name:
Matija
Hello Matija!
()

The mystery disappears when we realize that `print_string` on lines 4 and 6 get handled by `print_to_string`.

This is probably sufficient for a first introduction. We are still exploring the possibilities and we will post them when we think of something cool. For example, we know that delimited continuations are definable in eff (rather easily, since continuations are lurking around anyhow), as well as transactional memory and many other cool effects.

Comments

Ryan Ingram

28 September 2010 at 05:25

I'm really curious how you get your generic combine to work. I haven't had a chance to build
your system, but I really wonder what happens when you combine these two effects.

effect logger:
 operation print msg:
 (rest, x) = yield ()
 (msg : rest, x)

data Tree x = Leaf x | Node (Tree x) (Tree x)

effect treeChoice:
 operation choose (a,b):
 l = yield a
 r = yield b
 Node l r
 return x: Leaf x

I kind of want something that ends up like this effect:

effect choiceLogger:
 effect print msg =
 (log_result, result) = yield ()
 (msg ++ log_result, result)

 effect choose (a,b):
 l = yield a
 r = yield b
 ("", Node (l,r))

 return x = ("", Leaf x)

but I bet you get the logs shared between branches, in some type

Result = Leaf (String, a) | Node Result Result

instead of

Result = (String, Leaf a | Node Result Result)

Matija Pretnar

28 September 2010 at 08:32

An excellent question. I had no idea, so I tested it. I made some slight alterations to your
code: [sourcecode collapse="true"] def append msg log: match log: case "": msg case _: msg
^ ", " ^ log

effect logger: operation print msg: (log, result) = yield () (append msg log, result) return x: ("",
x)

effect treeChoice: operation choose (a, b): l = yield a r = yield b Node l r return x: Leaf x

effect choiceLogger: operation print msg: (log, result) = yield () (append msg log, result)
operation choose (a,b): l = yield a r = yield b ("", Node l r) return x: ("", Leaf x) </pre>

It turns out that you can get both result types you proposed, plus a third one, all depending
on the order in which you instantiate the effects.

If you first instantiate the logger, it will be shared between all the branches: [sourcecode
gutter="false" highlight="8,9"] >>> with logger... ... with treeChoice... ... x = choose (0, 1) ...
print ("x=" ^ to_string x) ... y = choose (2, 4) ... print ("y=" ^ to_string y) ... x + y ("x=0, y=2,
y=4, x=1, y=2, y=4", Node (Node (Leaf 2) (Leaf 4)) (Node (Leaf 3) (Leaf 5))) </pre>

If you first instantiate the choices, each one will have its own logger: [sourcecode
gutter="false" highlight="8,9"] >>> with treeChoice... ... with logger... ... x = choose (0, 1) ...
print ("x=" ^ to_string x) ... y = choose (2, 4) ... print ("y=" ^ to_string y) ... x + y Node (Node
(Leaf ("x=0, y=2", 2)) (Leaf ("x=0, y=4", 4))) (Node (Leaf ("x=1, y=2", 3)) (Leaf ("x=1, y=4",
5))) </pre>

In the combined effect you proposed, the logger gets reset at each node: [sourcecode
gutter="false" highlight="7,8"] >>> with choiceLogger... ... x = choose (0, 1) ... print ("x=" ^
to_string x) ... y = choose (2, 4) ... print ("y=" ^ to_string y) ... x + y ("", Node ("x=0", Node
("y=2", Leaf 2) ("y=4", Leaf 4)) ("x=1", Node ("y=2", Leaf 3) ("y=4", Leaf 5))) </pre>

Ryan Ingram

28 September 2010 at 09:08

Right, in the combined effect the sharing is explicit; it lets you distinguish between

print "0" choose (2,3)

and

choose (2,3)
print "0"

which otherwise commute (or print "0" twice to the single output log version).

Kay

29 September 2010 at 18:28

Something seems missing (compiled with Ocaml 3.10.2): ocamlbuild -use-menhir -
lib nums eff.byte + /usr/bin/ocamlc.opt -c -o lexer.cmo lexer.ml
File "lexer.mll", line 49, characters 26-34: Unbound value new_line
Command exited with code 2. make: *** [byte] Error 10

Andrej Bauer

29 September 2010 at 21:19

Yes, I think there was a change from Ocaml 3.10 to 3.11 in the Lexer module. Please use
Ocaml 3.11 or later. If there is sufficient interest, I can try making it Ocaml 3.10 compatible.

Martin Pärtel

01 October 2010 at 00:12

I managed to sort of implement a look-alike language as a pair of Haskell monads.

The min_choice example works well - the Haskell version is practically a line-for-line
translation. Unfortunately it failed to typecheck when I tried to program with more than one
value type, which I guess is unsurprising. It was a fun exercise nevertheless :)

You mention a "precise connection" between algebras and monads. What do you mean by
that? Is there more or less a straightforward mapping between eff and (Haskell) monads?

Ohad Kammar

02 October 2010 at 19:09

@Martin Pärtel, if I guessed right how your code looks like:

What interests me is how easy is it to port your code into another monad. That is, if I have a
monad that does something and I want to add non-determinism to it, how much scaffolding
will I have to build? How much scaffolding will I have to add in Eff (modulo making types
check)?

How to comment on this blog: At present comments are disabled because the relevant script died. If
you comment on this post on Mastodon and mention andrejbauer@mathstodon.xyz, I will gladly
respond. You are also welcome to contact me directly.

© 2023 Andrej Bauer

λ

type Store a:

 operation lo
okup: () -> a

 operation up
date: a -> ()

x = new Store

x.update 10
a = x.lookup (

)

x.update (a +
5)

x.lookup ()

ref loc = handler: return x:
 lambda s: x
 operation loc.update s' k:

 lambda s: (k ()) s'

 operation loc.lookup () k:

 lambda s: (k s) s

ref : Store → (A ⇒ (Int → A))

Next version added types and moved much closer to OCaml

Posts Talks Publications Software About

← The topology of the set of all types Programming with Algebraic Effects an... →

Mathematics and Computation
A blog about mathemat ics for computers

Eff 3.0
08 March 2012 Andrej Bauer Eff, News

Matija and I are pleased to announce a new major release of the eff programming language.

In the last year or so eff has matured considerably:

It now looks and feels like OCaml, so you won't have to learn yet another syntax.
It has static typing with parametric polymorphism and type inference.
Eff now clearly separates three basic concepts: effect types, effect instances, and handlers.
How eff works is explained in our paper on Programming with Algebraic Effects and Handlers.
We moved the source code to GitHub, so go ahead and fork it!

Comments

Dan Doel

02 April 2012 at 22:05

A question asked in #haskell a few days back sparked some thinking about Eff for me. The
question was:

Why can't we use a free monad over F X = Get (S -> X) | Put S X for state?

The answer is that this isn't specifying the algebra of a mutable cell precisely, whereas S ->
S * X does. We want Get and Put to interact in certain ways, and the proper algebraic
theory is a quotient of the free algebraic theory over the two operations.

But, it occurred to me that the free monad is exactly what Eff does. You specify that get and
put exist, but there is no relation between them, unless I'm missing something. And
presumably the handlers would be able to observe various sequences of gets and puts that
would be indistinguishable under the quotient?

So, are there plans to add equations (or some equivalent) to the algebraic theories in Eff. Or
is my recollection of what all is possible in Eff just fuzzy, and there is already a way to handle
this properly?

Andrej Bauer

02 April 2012 at 22:37

@Dan: you raise an important question, and it is important to understand the answer: the
equations have no place in Eff. The equations are about what is expected of a correct
implementation, i.e., they are specifications. Equations do not tell us how to compute things
(except in the lucky case when they can be directed so that they become reduction rules).
How is Eff, or any other language, supposed to enforce equations?

In your concrete example, the relation between Put and Get is captured by the handler
which handles them. There are many handlers, some of which satisfy the expected
equations. Those can be said to be correct for the given equations.

I do not undertand your last sentence about fuzziness.

Dan Doel

03 April 2012 at 00:37

There are plenty of languages that allow you to state and enforce equations. Most
dependently typed languages, for instance. Also Maude, I believe. And Neel Krishnaswami
has a paper on adding equations to System F. I don't know that any of that would be suitable
for Eff, though.

In the specific example, state algebras are characterized by the typical state monad, and the
free state algebra over a type A is S -> S * A. So if handlers are homomorphisms from a free
algebra to another algebra, then that should be their source for the equation-incorporating
state case. However I don't know how to determine this from the operations + equations; it
doesn't seems like a tractable problem. And even were that solved, ensuring that the target
is an algebra and that the definition is a proper homomorphism probably isn't automatic.

The fuzziness sentence was just hedging against my having forgotten some feature of Eff
that let you specify equations somehow. It's been a while since I read about it.

Andrej Bauer

03 April 2012 at 01:35

Ah yes. Eff is a programming language in the traditional sense of the word, under which Coq,
Agda, etc., are proof assistants and not programming languages.

Perhaps it is useful to think of things in the following way: in Eff the valid equations are those
induced by handlers. Does that make you happier?

Mike

17 June 2014 at 01:55

I have one question: are there differences between resources and mutable references? Are
resources superior to mutables or not?

Andrej Bauer

17 June 2014 at 12:05

Resources are slightly more general. You can implemented references using resources, but
you can also use resources for other "state-like" things. You can impement lazy values using
resources, as well as persistent data structures and self-modifying structures, such as splay
trees. Of course, you can do all of this if you have references, too. So in some sense
resources and references are equally expressive. Note that there can also be primitive
(builtin) resources that actually interact with the environment, such as streams of
randomness, or communication channels.

How to comment on this blog: At present comments are disabled because the relevant script died. If
you comment on this post on Mastodon and mention andrejbauer@mathstodon.xyz, I will gladly
respond. You are also welcome to contact me directly.

© 2023 Andrej Bauer

type 'a ref = effect operation get: unit -> 'a operation set: 'a -> unitend

let state r x = handler | r#get () k -> (fun s -> k s s)
 | r#set s' k -> (fun s -> k () s')
 | val y -> (fun s -> (y, s))
 | finally f -> f x

Wadler

Comprehending
monads

1991

Moggi

Computational lambda-calculus
and monads

1989

Plotkin & P.

Handlers of
algebraic effects

2009

The new version of Eff also had an accompanying research paper

Journal of Logical and Algebraic Methods in Programming 84 (2015) 108–123

Contents lists available at ScienceDirectJournal of Logical and Algebraic Methods inProgramming
www.elsevier.com/locate/jlamp

Programming with algebraic effects and handlersAndrej Bauer, Matija Pretnar ∗
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

a r t i c l e i n f o
a b s t r a c tArticle history:

Received 29 February 2012Received in revised form 12 November 2013Accepted 22 February 2014Available online 20 March 2014

Eff is a programming language based on the algebraic approach to computational effects,

in which effects are viewed as algebraic operations and effect handlers as homomorphisms

from free algebras. Eff supports first-class effects and handlers through which we may eas-

ily define new computational effects, seamlessly combine existing ones, and handle them

in novel ways. We give a denotational semantics of Eff and discuss a prototype implemen-

tation based on it. Through examples we demonstrate how the standard effects are treated

in Eff, and how Eff supports programming techniques that use various forms of delimited

continuations, such as backtracking, breadth-first search, selection functionals, cooperative

multi-threading, and others.

© 2014 Elsevier Inc. All rights reserved.0. Introduction

Eff is a programming language based on the algebraic approach to effects, in which computational effects are modeled as

operations of a suitably chosen algebraic theory [12]. Common computational effects such as input, output, state, exceptions,

and nondeterminism, are of this kind. Continuations are not algebraic [4], but they turn out to be naturally supported by Eff

as well. Effect handlers are a related notion [14,19] which encompasses exception handlers, stream redirection, transactions,

backtracking, and many others. These are modeled as homomorphisms induced by the universal property of free algebras.

Each algebraic theory gives rise to a monad [1,11], although the operations cannot be reconstructed from it. Algebraic

theories have their own virtues, though. Effects are combined more easily than monads [5], and the interaction between

effects and handlers offers new ways of programming. An experiment in the design of a programming language based on

the algebraic approach therefore seems warranted.
Philip Wadler once opined [21] that monads as a programming concept would not have been discovered without their

category-theoretic counterparts, but once they were, programmers could live in blissful ignorance of their origin. Because

the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of programmers, trusting that

connoisseurs will recognize the connections with the underlying mathematical theory.

The paper is organized as follows. Section 1 describes the syntax of Eff, Section 2 informally introduces constructs specific

to Eff, Section 3 is devoted to type checking, in Section 4 we give a domain-theoretic semantics of Eff, and in Section 5 we

briefly discuss our prototype implementation. The examples in Section 6 demonstrate how effects and handlers can be

used to produce standard computational effects, such as exceptions, state, input and output, as well as their variations and

combinations. Further examples show how Eff ’s delimited control capabilities are used for nondeterministic and probabilistic

choice, backtracking, selection functionals, and cooperative multi-threading. We conclude with thoughts about the future

work.
The implementation of Eff is freely available at http://www.eff-lang.org/.* Corresponding author.E-mail addresses: andrej@andrej.com (A. Bauer), matija@pretnar.info (M. Pretnar).

http://dx.doi.org/10.1016/j.jlamp.2014.02.0012352-2208/© 2014 Elsevier Inc. All rights reserved.

Journal of Logical and Algebraic Methods in Programming 84 (2015) 108–123

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming

www.elsevier.com/locate/jlamp

Programming with algebraic effects and handlers

Andrej Bauer, Matija Pretnar ∗

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

a r t i c l e i n f o a b s t r a c t

Article history:

Received 29 February 2012

Received in revised form 12 November 2013

Accepted 22 February 2014

Available online 20 March 2014

Eff is a programming language based on the algebraic approach to computational effects,

in which effects are viewed as algebraic operations and effect handlers as homomorphisms

from free algebras. Eff supports first-class effects and handlers through which we may eas-

ily define new computational effects, seamlessly combine existing ones, and handle them

in novel ways. We give a denotational semantics of Eff and discuss a prototype implemen-

tation based on it. Through examples we demonstrate how the standard effects are treated

in Eff, and how Eff supports programming techniques that use various forms of delimited

continuations, such as backtracking, breadth-first search, selection functionals, cooperative

multi-threading, and others. © 2014 Elsevier Inc. All rights reserved.

0. Introduction

Eff is a programming language based on the algebraic approach to effects, in which computational effects are modeled as

operations of a suitably chosen algebraic theory [12]. Common computational effects such as input, output, state, exceptions,

and nondeterminism, are of this kind. Continuations are not algebraic [4], but they turn out to be naturally supported by Eff

as well. Effect handlers are a related notion [14,19] which encompasses exception handlers, stream redirection, transactions,

backtracking, and many others. These are modeled as homomorphisms induced by the universal property of free algebras.

Each algebraic theory gives rise to a monad [1,11], although the operations cannot be reconstructed from it. Algebraic

theories have their own virtues, though. Effects are combined more easily than monads [5], and the interaction between

effects and handlers offers new ways of programming. An experiment in the design of a programming language based on

the algebraic approach therefore seems warranted.

Philip Wadler once opined [21] that monads as a programming concept would not have been discovered without their

category-theoretic counterparts, but once they were, programmers could live in blissful ignorance of their origin. Because

the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of programmers, trusting that

connoisseurs will recognize the connections with the underlying mathematical theory.

The paper is organized as follows. Section 1 describes the syntax of Eff, Section 2 informally introduces constructs specific

to Eff, Section 3 is devoted to type checking, in Section 4 we give a domain-theoretic semantics of Eff, and in Section 5 we

briefly discuss our prototype implementation. The examples in Section 6 demonstrate how effects and handlers can be

used to produce standard computational effects, such as exceptions, state, input and output, as well as their variations and

combinations. Further examples show how Eff ’s delimited control capabilities are used for nondeterministic and probabilistic

choice, backtracking, selection functionals, and cooperative multi-threading. We conclude with thoughts about the future

work.
The implementation of Eff is freely available at http://www.eff-lang.org/.

* Corresponding author.

E-mail addresses: andrej@andrej.com (A. Bauer), matija@pretnar.info (M. Pretnar).

http://dx.doi.org/10.1016/j.jlamp.2014.02.001

2352-2208/© 2014 Elsevier Inc. All rights reserved.

Moving from mathematics to programming gave extra flexibility
� ` u :�

� ;Z ` returnu :F�

� ;Z ` h :F�
�, x :�;Z ` h

0 :�

� ;Z ` letx beh inh
0 :�

,

and the standard rules for conditionals, products, and functions.

For greater
generality,

handlers are parametric in two ways: their type con-

tains type variables, and they are dependent on parameters xp and zp, supplied

through the handling construct. A handler is given by a handling term for each

operation, dependent on its parameters x and arguments z, and is typed by

xp :�,x :�;zp :�, (zi : (↵i) ! �)ni=1
` hop :� (op:�;↵1, .

. . ,↵n 2 ⌃e↵)

` (xp :�;zp :�).{opx(z) 7! hop}op2⌃eff
: (�;�) ! � handler

.

When opx(z) 7! hop
is omitted, we assume that hop

= opx(xi : ↵i.zi(xi))i, so

that op is not handled.

4.1
Semantics

For each assignment of models [[X]] to type variables X, handler types � are

interpreted by models [[�]], given by

[[F�]] = F [[�]]

[[1]] = 1

[[�1 ⇥ �2]] = [[�1]] ⇥ [[�2]]
[[� ! �]] = [[�]][[�]] ,

where the model is given component-wise on M1 ⇥M2 and point-wise on M
A .

Then, we interpret contexts Z = z1 : (↵1) ! �1, .
. . , zn : (↵n) ! �n by

[[Z]] = U [[�1]]
[[↵1]] ⇥ · · · ⇥ U [[�n]][[↵n]] and handler terms � ;Z ` h : � by maps

[[h]] : [[�]] ⇥ [[Z]] ! U [[�]], defined inductively by

[[� ;Z ` zi(v) :�i]] = ev � hprU [[�i]]
[[↵i]]

, [[v]]i ,

[[� ;Z ` opv(xi.hi)i :�]] = op[[�]] � h[[v
]], d[[h1]], . . .

,
d[[hn]]i ,

[[� ;Z ` returnu :F�]] = ⌘[[�]] � [[u]] ,

[[� ;Z ` letx beh inh
0 :�]] = [[h0]]

† � hid� , idZ, [[h]]i ,

where bf : B ! C
A is the transpose of f : A⇥B ! C and f

† : A⇥UFB ! UM

is the lifting of f : A⇥ B ! UM , which is defined by U✏ � UFf � stA,B, where

stA,B : A ⇥ UFB ! UF (A ⇥ B) is the strength of the functor UF . The inter-

pretation
s of conditionals, products, and functions are defined as usual [15].

A handler (xp :�;zp :�).{opx(z) 7! hop}op2⌃eff
: (�;�) ! � handler is cor-

rect (with respect to E) if for all assignments of models [[X]] to type variables X,

and for all parameters ap 2 [[�]] and mp 2 [[�]], the family of maps

{[[hop]] � hap,p
r[[�]],

mp,p
r

Q
i
U [[�]][[↵i]]

i : [[�]] ⇥
Y

i

U [[�]][[↵i]] ! U [[�]]}op2⌃eff

defines a model of the e↵ect theory E on U [[�]].

7

A. Bauer, M. Pretnar / Journal of Logical and Algebraic Methods in Programming 84 (2015) 108–123
109

1. Syntax

Eff is a statically typed language with parametric polymorphism and type inference. Its types include products, sums,

records, and recursive type definitions. To keep to the point, we focus on a core language with monomorphic types and

type checking. The concrete syntax follows that of OCaml [6], so we discuss it only in relation to the new constructs.

1.1. Types

Apart from the standard types, Eff has effect types E and handler types A ⇒ B:

A, B, C ::= int
∣∣ bool

∣∣ unit
∣∣ empty

∣∣

A × B
∣∣ A + B

∣∣ A → B
∣∣ E

∣∣ A ⇒ B,

(type)

E ::= effect (operation o
pi : Ai → Bi)i end.

(effect type)

In the rule for effect types and elsewhere below (· · ·)i indicates that · · · may be repeated a finite number of times. We in-

clude the empty type as we need it to describe exceptions, see Section 6.2. An effect type declares a collection of related

operation symbols, for example those for writing to and reading from a communication channel. We write op : A → B ∈ E

or just op ∈ E to indicate that the effect type E contains an operation op with parameters of type A and results of type B .

The handler type A ⇒ B should be understood as the type of handlers acting on computations of type A and yielding

computations of type B .

1.2. Expressions and computations

Eff distinguishes between expressions and computations, which are similar to values and producers of fine-grain call-

by-value [7]. The former are inert and free from computational effects, including divergence, while the latter may diverge

or cause computational effects. As discussed in Section 5, the concrete syntax of Eff hides the distinction and allows the

programmer to freely mix expressions and computations.

Beware that we use two kinds of vertical bars below: the tall
∣∣ separates grammatical alternatives, and the short |

separates cases in handlers and match statements. The expressions are

e ::= x
∣∣ n

∣∣ b
∣∣ true

∣∣ false
∣∣ ()

∣∣ (e1, e2)
∣∣

Left e
∣∣ Right e

∣∣ fun x : A %→ c
∣∣ e #op

∣∣ h,

(expression)

h ::= handler val x %→ cv |(ei #opi x k %→ ci)i |finally x %→ c f ,

(handler)

where x signifies a variable, n an integer constant, and b other built-in constants. The expressions (), (e1, e2), Left e,

Right e, and fun x : A %→ c are introduction forms for the unit, product, sum, and function types, respectively. Operations

e #op and handlers h are discussed in Section 2.

The computations are

c ::= val e
∣∣ let x = c1 in c2

∣∣ let rec f x = c1 in c2
∣∣

if e then c1 else c2
∣∣ match e with

∣∣ match e with (x, y) %→ c
∣∣

match e with Left x %→ c1 |Right y %→ c2
∣∣ e1 e2

∣∣

new E
∣∣ new E @ e with (operation o

pi x @ y %→ ci)i end
∣∣

with e handle c.

(computation)

An expression e is promoted to a computation with val e, but in the concrete syntax val is omitted, as there is no dis-

tinction between expressions and computations. The statement let x = c1 in c2 binds x in c2, and let rec f x = c1 in c2

defines a recursive function f in c2. The conditional statement and the variations of match are elimination forms for

booleans, the empty type, products, and sums, respectively. Instance creation and the handling construct are discussed in

Section 2.
Arithmetical expressions such as e1 +e2 count as computations because the arithmetical operators are defined as built-in

constants, so that e1 + e2 is parsed as a double application. This allows us to uniformly treat all operations, irrespective of

whether they are pure or effectful (division by zero).

2. Constructs specific to Eff

We explain the intuitive meaning of notions that are specific to Eff, namely instances, operations, handlers, and resources.

We allow ourselves some slack in distinguishing syntax from semantics, which is treated in detail in Section 4. It is helpful

to think of a terminating computation as evaluating either to a value or an operation applied to a parameter.

Plotkin & P.

Bauer & P.

Notion of models got absorbed in homomorphisms

2.1 Instances and operations

The computation new E generates a fresh effect instan
ce of effect typeE. For exampl

e,

new ref generates a new reference, new channel a new communication channel,

etc. The extended form of new
creates an effect instance with

an associated resource,

which determines the default
behaviour of operations and i

s explained separately in

Section 2.3.
For each effect instance e of e

ffect type E and an operation symbol op ∈
E there

is an operation e # op, also kno
wn as a generic effect [12]. By

itself, an operation is a

value, and hence effect-free, bu
t an applied operation e # op e

′ is a computational effect

whose ramifications are determ
ined by enveloping handlers an

d the resource associated

with e.

2.2 Handlers

A handler

h = handler (ei # opi x k "→ ci)i | val x "→ cv | finally x "→ cf

may be applied to a computati
on c with the handling constru

ct

with h handle c,
(1)

which works as follows (we ig
nore the finally clause for t

he moment):

1. If c evaluates to val e, (1) evaluates to cv with x bo
und to e.

2. If the evaluation of c encou
nters an operation ei # opi e, (1

) evaluates to ci with

x bound to e and k bound to th
e continuation of ei # opi e, i.e

., whatever remains

to be computed after the opera
tion. The continuation is delim

ited by (1) and is

handled by h as well.

The finally clause can be th
ought of as an outer wrapper

which performs an addi-

tional transformation, so that (
1) is equivalent to

let x = (with h′ handle c) in cf

where h′ is like h without the
finally clause. Such a wrap

per is useful because we

often perform the same transfo
rmation every time a given ha

ndler is applied. For ex-

ample, the handler for state ha
ndles a computation by transfo

rming it to a function ac-

cepting the state, and finally
applies the function to the initi

al state, see Section 6.3.

If the evaluation of c encount
ers an operation e # op e′ that is not listed in h, the

control propagates to outer ha
ndling constructs, and eventua

lly to the toplevel, where

the behaviour is determined by
the resource associated with e.

2.3 Resources

The construct

new E @ e with (operation opi x@ y "→ ci)i end

4

Then, � ` try twithH(u; t) asx in t
0 is interpreted by

g[[t0]] � hid[[�]], [[t]]i :
[[�]] ! U [[�[⌧/X]withH(u; t)]] = U [[�[⌧/X]]] .

6 Examples

6.1
Exception

s

The standard uniform exception handler Hexc : (exc ! X) ! X handler is

(z :exc ! X).{raisee() 7! ze} .

Benton and Kennedy’s construct try x (t in t
0 unless {e1) t1 | · · · | en) tn}

can then be written as try twith texc asx in t
0 for a suitable term texc :exc ! ⌧ .

Benton and Kennedy noted a few issues about the syntax of their construct

when used for programming [13]. It is not obvious that t is handled whereas t
0

is not, especially when t
0 is large and the handler is obscured. An alternative

they propose is try x (t unless {e1) t1 | . . . | en) tn}i in t
0 , but then it is not

obvious that x is bound in t
0 , but not in the handler. The syntax of our con-

struct try twithH(u; t) asx in t
0 addresses those issues and clarifies the order of

evaluation: after t is handled with H, its results are bound to x and used in t
0 .

6.2
Strea

m redirect
ion

Shell processes in Unix-like operating systems communicate with the user us-

ing input and output streams, usually connected to a keyboard and a terminal

window. However, such streams can be rerouted to other processes and simple

commands can be combined into more powerful ones.

One case is the redirection
proc > outfil

e of the output stream of a pro-

cess proc
to a file outfi

le, usually used to store the output for a future analysis.

An alternative is the redirection proc > /dev/n
ull to the null device, which ef-

fectively
discards the standard output stream.

Another case is the pipe proc1
| proc2, where the output of proc1

is fed to

the input of proc2
. For example, to get a way (not necessarily

the best one) of

routinely confirming a series of actions, for example deleting a large number of

files, we write yes | proc, where the command yes outputs an infinite stream

made of a predetermined character (default one being y).

We represent interactive
input/output by: a base signature, consisting of

a base type char of characters
and constants a, b, . . .

of type char, together

with the obvious interpretation; an e↵ect signature, consisting of operation sym-

bols out : char; 1 and in : char, with the empty e↵ect theory. Then, if t is a

computation, we can express yes
| t > /dev/n

ull by handle twithHred, where

Hred
:X handler is given by {outc(z) 7! z, in(z) 7! z(y)}.

9

Plotkin & P.

Bauer & P.

Equations disappeared

algebraic operation; such families are characterised by a certain naturality con-

dition [5].
Although this gives a way of constructing, combining [10], and reasoning [11]

about algebraic e↵ects, it does not account for their handling, as exception han-

dlers, a well-known programming concept, fail to be algebraic operations [5].

Conceptually, algebraic operations and e↵ect handlers are dual: the former could

be called e↵ect constructors as they give rise to the e↵ects; the latter could be

called e↵ect deconstructors as they depend on the e↵ects already created. Filin-

ski’s reflection and reification [12] are closely related general concepts.

This paper introduces a handling construction for arbitrary algebraic e↵ects.

The central new idea is that, semantically, handling a computation amounts

to composing it with a unique homomorphism guaranteed by universality. The

domain of this homomorphism is a free model of the algebraic theory of the

e↵ects at hand; its range is a programmer-defined model of the algebraic theory;

and it extends a programmer-defined map on values. The principal example

is exception handling, particularly the exception-handling construct of Benton

and Kennedy [13], which our new construct generalises. It also includes many

other, previously unrelated, concepts. For example, stream redirection of shell

processes, renaming and hiding in CCS [14], timeout, and rollback can all be

seen as instances of such handlers.

In Section 2 we explain the idea of using homomorphisms for the seman-

tics of handlers via an informal discussion of exception handlers. In the follow-

ing Sections 3, 4 and 5 we develop a formal calculus in the call-by-push-value

framework [15, 11]. Section 3, describes (base) values and the algebraic theory

of e↵ects. A natural need for two languages arises: one to describe handlers,

given in Section 4, and one where they are used to handle computations, given

in Section 5. The second parts of these sections give the relevant denotational

semantics; readers may wish to omit these and continue with Section 6, where

we give examples.

We outline a version of a logic for algebraic e↵ects [11] with handlers in Sec-

tion 7. In Section 8 we sketch the inclusion of recursion: until then we work only

with sets and functions, but everything adapts straightforwardly to !-cpos (par-

tial orders with sups of increasing sequences) and continuous functions (mono-

tone functions preserving sups of increasing sequences). Finally, we discuss some

open questions and possible future work in Section 9.

2 Exception handlers

We start our study with exception handlers both because they are an established

concept [13, 16] and also because exceptions provide the simplest example of

algebraic e↵ects. To focus on the exposition of ideas, we write this section in a

rather informal style, mixing syntax and semantics.

Taking a set of exceptions E, the computations that return values from a

set X are represented by elements, �, of TX =def X+E; the unit of the monad is

⌘ = x 7! inl(x). Algebraically, one may take a nullary operation, i.e., a constant,

2

Plotkin & P.

Bauer & P.

ensuring correctness

programmer

writes and uses
handlers

language designer

writes handlers

programmer
uses them

maximum result

operations
or : 2

handlers
Hmax = { or(x1, x2) → max(x1, x2) }

try or(or(3, 2), 5) with Hmax = 5

Hsum = { or(x1, x2) → x1 + x2 }

try or(3, 3) with Hsum = 6

try 3 with Hsum = 3

Shallow handlers were visible only when looking operationally

Handlers in Action
Ohad Kammar

University of Cambridgeohad.kammar@cl.cam.ac.uk

Sam Lindley
University of StrathclydeSam.Lindley@ed.ac.uk

Nicolas Oury
nicolas.oury@gmail.com

Abstract
Plotkin and Pretnar’s handlers for algebraic effects occupy a sweet
spot in the design space of abstractions for effectful computation.
By separating effect signatures from their implementation, alge-
braic effects provide a high degree of modularity, allowing pro-
grammers to express effectful programs independently of the con-
crete interpretation of their effects. A handler is an interpretation
of the effects of an algebraic computation. The handler abstraction
adapts well to multiple settings: pure or impure, strict or lazy, static
types or dynamic types.This is a position paper whose main aim is to popularise the
handler abstraction. We give a gentle introduction to its use, a col-
lection of illustrative examples, and a straightforward operational
semantics. We describe our Haskell implementation of handlers
in detail, outline the ideas behind our OCaml, SML, and Racket
implementations, and present experimental results comparing han-
dlers with existing code.
Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.3.1 [Formal Definitions and Theory];
D.3.2 [Language Classifications]: Applicative (functional) lan-
guages; D.3.3 [Language Constructs and Features]; F.3.2 [Se-
mantics of Programming Languages]: Operational semanticsKeywords algebraic effects; effect handlers; effect typing; mon-

ads; continuations; Haskell; modularity
1. Introduction
Monads have proven remarkably successful as a tool for abstrac-
tion over effectful computations [4, 30, 46]. However, monads as a
programming language primitive violate the fundamental encapsu-
lation principle: program to an interface, not to an implementation.

Modular programs are constructed using abstract interfaces as
building blocks. This is modular abstraction. To give meaning to
an abstract interface, we instantiate it with a concrete implemen-
tation. Given a composite interface, each sub-interface can be in-
dependently instantiated with different concrete implementations.
This is modular instantiation.The monadic approach to functional programming takes a con-
crete implementation rather than an abstract interface as primitive.
For instance, in Haskell we might define a state monad:

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.http://dx.doi.org/10.1145/2500365.2500590

newtype State s a = State {runState :: s ! (a, s)}
instance Monad (State s) wherereturn x = State (�s ! (x , s))m >>= f = State (�s ! let (x , s 0) = runState m s inrunState (f x) s 0)This definition says nothing about the intended use of State s a

as the type of computations that read and write state. Worse, it
breaks abstraction as consumers of state are exposed to its concrete
implementation as a function of type s ! (a, s). We can of
course define the natural get and put operations on state, but their
implementations are fixed.Jones [18] advocates modular abstraction for monads in Haskell
using type classes. For instance, we can define the following inter-
face to abstract state computation1:

class Monad m) MonadState s m | m ! s where
get :: m s
put :: s ! m ()

The MonadState interface can be smoothly combined with other
interfaces, taking advantage of Haskell’s type class mechanism to
represent type-level sets of effects.Monad transformers [25] provide a form of modular instantia-
tion for abstract monadic computations. For instance, state can be
handled in the presence of other effects by incorporating a state
monad transformer within a monad transformer stack.

A fundamental problem with monad transformer stacks is that
once a particular abstract effect is instantiated, the order of effects
in the stack becomes concrete, and it becomes necessary to explic-
itly lift operations through the stack. Taming the monad transformer
stack is an active research area [16, 17, 38, 42].Instead of the top-down monad transformer approach, we take
a bottom-up approach, simply adding the required features as lan-
guage primitives. We want modular abstraction, so we add abstract
effect interfaces, in fact abstract operations, as a language prim-
itive. Abstract operations compose, yielding modular abstraction.
We also want modular instantiation, so we add effect handlers as
a language primitive for instantiating an abstract operation with a
concrete implementation. A handler operates on a specified subset
of the abstract operations performed by an abstract computation,
leaving the remainder abstract, and yielding modular instantiation.

By directly adding the features we require, we obtain modular
abstraction and modular instantiation while avoiding many of the
pitfalls of monad transformers.Our first inspiration is the algebraic theory of computational
effects. Introduced by Plotkin and Power [33–35], it complements
Moggi’s monadic account of effects by incorporating abstract effect
interfaces as primitive. Our second inspiration is the elimination
construct for algebraic effects, effect handlers [36]. In Plotkin and
Power’s setting, one defines algebraic effects with respect to an
equational theory. As with other handler implementations [2, 6, 29],1 From the Monad Transformer Library [12].

wcString :: String ! IO ()

wcString s =

let (c,w , l) = handlePure (stringReader s wc) in

putStrLn $ (show l) ++ " "++ (show w) ++ " "++ (show c)

Here is a version of wc that uses standard input:

wcStdin :: IO ()

wcStdin = do

(c,w , l) handleIO (stdinReader wc)

putStrLn $ (show l) ++ " "++ (show w) ++ " "++ (show c)

In practice, one might define other handlers in order to support file

input, network input, or different forms of buffering.

2.5 Tail

The tail program takes an argument n and prints the last n lines of

a text file. In order to implement the functionality of tail , we make

use of readLine as well as two additional abstract operations: the

first to record a line, and the second to print all recorded lines.

[operation | SaveLine :: String ! () |]

[operation | PrintAll :: () |]

With these two operations, implementing an abstract tail computa-

tion tailComp is straightforward.

tailComp ::

([handles | h {ReadChar } |], [handles | h {Finished } |],

[handles | h {SaveLine } |], [handles | h {PrintAll } |])

) Comp h ()

tailComp =

do s readLine; saveLine s

b finished ; if b then printAll else tailComp

We now just need to handle the SaveLine and ReadLine opera-

tions. A naive handler might store all saved lines in memory, and

print the last n as required. In practice, a more efficient implemen-

tation might store only the last n lines, using a circular array, say.

2.6 Pipes and Shallow Handlers

The behaviour of handlers we have described thus far is such that

the continuation of an operation is handled with the current handler

(though the parameters passed to the continuation may differ from

the current parameters).
Another possible behaviour is for the continuation to return an

unhandled computation, which must then be handled explicitly. We

call such handlers shallow handlers because each handler only han-

dles one step of a computation, in contrast to Plotkin and Pretnar’s

deep handlers. Shallow handlers are to deep handlers as case anal-

ysis is to a fold on an algebraic data type.

Shallow handlers sometimes lead to slightly longer code. For

example, the EvalState handler from Section 2.1 becomes:

[shallowHandler |
EvalStateShallow s a :: s ! a

handles {Get s,Put s } where

Return x s ! x

Get k s ! evalStateShallow (k s) s

Put s k ! evalStateShallow (k ()) s |]

The need to call the handler recursively in most clauses is charac-

teristic of the style of program one writes with shallow handlers.

In some situations, it is helpful to have access to the unhandled

result of the continuation. Consider pipes as exemplified by Gon-

zalez’s pipes library [14]. A pipe is a data structure used to rep-

resent composable producers and consumers of data. A consumer

can await data and a producer can yield data. A pipe is both a

consumer and a producer. It is straightforward to provide such an

abstraction with the following operations5:

5 These operations have exactly the same signatures as Get and Put , but

their intended interpretation is different. For instance, yield x ; yield y is

in no way equivalent to yield y .

[operation | Await s :: s |]

[operation | Yield s :: s ! () |]

To define a plumbing operator that combines a compatible con-

sumer and producer we write two handlers: one handles the down-

stream consumer and keeps a suspended producer to resume when

needed, the other handles the upstream producer and keeps a sus-

pended consumer. These two handlers are straightforward to write

using shallow handlers:

[shallowHandler |
forward h.Down s a :: Comp (Up h a) a ! a

handles {Await s } where

Return x ! return x

Await k prod ! up k prod |]

[shallowHandler |
forward h.Up s a :: (s ! Comp (Down h a) a)! a

handles {Yield s } where

Return x ! return x

Yield s k cons ! down (k ()) (cons s) |]

However, transforming these handlers into deep handlers re-

quires some ingenuity. Indeed, we need to work with continuations

that are fully handled and we cannot keep the simple mutually re-

cursive structure of the two handlers. Instead, we introduce two

mutually recursive type definitions

data Prod s r = Prod (()! Cons s r ! r)

data Cons s r = Cons (s ! Prod s r ! r)

which we use to encode the suspended partner of each computation

[handler |
forward h.Down s a :: Prod s (Comp h a)! a

handles {Await s } where

Return x ! return x

Await k (Prod prod) ! prod () (Cons k) |]

[handler |
forward h.Up s a :: Cons s (Comp h a)! a

handles {Yield s } where

Return x ! return x

Yield s k (Cons cons)! cons s (Prod k) |]

resulting in a more complex program. We believe both deep and

shallow handlers are useful. For clarity of presentation, we focus on

deep handlers in the rest of this paper. In Section 3.4 and Section 4.2

we outline how shallow handlers differ from the main presentation.

2.7 Other Perspectives

In this paper we primarily treat handlers as a flexible tool for

interpreting abstract effectful computations. Before we proceed

with the rest of the paper we highlight some alternative perspectives

on what handlers are.

Generalised exception handlers. Benton and Kennedy [3] intro-

duced the idea of adding a return continuation to exception han-

dlers. Their return continuation corresponds exactly to the return

clause of an effect handler. Effect handler operation clauses gener-

alise exception handler clauses by adding a continuation argument,

providing support for arbitrary effects. An operation clause that ig-

nores its continuation argument behaves like a standard exception

handler clause.

Taming delimited continuations. A handler invocation delimits

the start of a continuation. Each operation clause captures the con-

tinuation of the computation currently being handled, that is, the

continuation up to the invocation point of the handler. Effect han-

dlers modularise delimited continuations by capturing particular

patterns of use. As Andrej Bauer, the co-creator of the Eff [2] lan-

HANDLERS

Can equations also be tracked in an effect system?
ZU064-05-FPR main 22 January 2019 22:9

Under consideration for publication in J. Functional Programming
1

Local Algebraic Effect Theories
Žiga Lukšič and Matija Pretnar⇤University of Ljubljana, Faculty of Mathematics and Physics, Slovenia

(e-mail: ziga.luksic@fmf.uni-lj.si, matija.pretnar@fmf.uni-lj.si)

AbstractAlgebraic effects are computational effects that can be described with a set of basic operations and

equations between them. As many interesting effect handlers do not respect these equations, most

approaches assume a trivial theory, sacrificing both reasoning power and safety.
We present an alternative approach where the type system tracks equations that are observed

in subparts of the program, yielding a sound and flexible logic, and paving a way for practical

optimizations and reasoning tools.

Algebraic effects are computational effects that can be described by a signature of primitive

operations and a collection of equations between them (Plotkin & Power, 2001; Plotkin &

Power, 2003), while algebraic effect handlers are a generalization of exception handlers

to arbitrary algebraic effects (Plotkin & Pretnar, 2009; Plotkin & Pretnar, 2013). Even

though the early work considered only handlers that respect equations of the effect theory, a

considerable amount of useful handlers did not, and the restriction was dropped in most —

though not all (Ahman, 2018) — of the later work on handlers (Kammar et al., 2013; Bauer

& Pretnar, 2015; Leijen, 2017; Biernacki et al., 2018), resulting in a weaker reasoning logic

and imprecise specifications.Our aim is to rectify this by reintroducing effect theories into the type system, tracking

equations observed in parts of a program. On one hand, the induced logic allows us to

rewrite computations into equivalent ones with respect to the effect theory, while on the

other hand, the type system enforces that handlers preserve equivalences, further specifying

their behaviour. After an informal overview in Section 1, we proceed as follows:
• The syntax of the working language, its operational semantics, and the typing rules

are given in Section 2.• Determining if a handler respects an effect theory is in general undecidable (Plotkin

& Pretnar, 2013), so there is no canonical way of defining such a judgement. There-

fore, the typing rules are given parametric to a reasoning logic, and in Section 3, we

present some of the more interesting choices.• Since the definition of typing judgements is intertwined with a reasoning logic, we

must be careful when defining the denotation of types and terms. Thus, in Section 4,

we first introduce a set-based denotational semantics that disregards effect theories

and prove the expected meta-theoretic properties.
⇤ This material is based upon work supported by the Air Force Office of Scientific Research under

award number FA9550-17-1-0326.

Γ ⊢ M : σ!φ/ℰ
PUTTING REASON

BACK INTO HANDLERS

EZ2USE ♻90%

now with up to

37% shorter* proofs
*Findings based on a survey of 2 proofs conducted today

HANDLERS

Efficient execution is just fusion with purity-aware compilation

Eff

OCaml

Schrijvers
et al.

submitted
to ICFP

2017

verdict: REJECT

Benchmark 3: there is no benchmark 3
The experimental evaluation of the optimization is very thin and
significantly below the kind of evaluation that one expects of an
optimization paper at a venue like ICFP.

reviewer #113A
Only my concern is that the benchmark set is rather small. It remains to
be seen if this improvement scales to larger programs.reviewer #113B

Your compiler doesn't seem to support implementing high-level effects
with OCaml's native effects, like references and console input/output. At
least, there are no examples in the paper.

reviewer #113C
The evaluation of the work is only done using two very small
benchmarks: a looping counter and nqueens.

reviewer #113D

Jump Search

You are here: Foswiki > IFIP21 Web > FutureMeetings > Uruguay (23 Mar 2017, TomSchrijvers)
EditEdit AttachAttach

Meeting Information

The 75th meeting will be organised by Alberto Pardo.

Dates

Monday 2017-02-20 to Friday 2017-02-24.

Participants

Name Arrival
Departure

Notes

Tom Schrijvers 2017-02-17 23:10 from Sao Paolo on 7632 2017-02-24 14:20 to Sao Paolo on 7631

Lambert Meertens 2017-02-19 06:46 CM0368 from Panama 2017-02-25 01:26 CM0284 to Panama

Patrik Jansson 2017-02-15 11:10 from Sao Paolo on JJ8034 2017-02-24 14:20 to Sao Paolo on G37631

Doaitse Swierstra 2017-02-16 from Madrid on IB6011 Iberia TND, to Foz do Iguacu and Bolivia

Jeremy Gibbons 2017-02-19 08:30 on IB6011 from Madrid 2017-02-26 14:35 on IB6012 to Madrid

Bernhard M\xF6ller 2017-02-19 08:30 IB6011 from Madrid 2017-03-02 14:35 IB6012 to Madrid

Jose Oliveira 2017-02-19 08:30 IB6011 from Madrid 2017-02-26 14:35 IB6012 to Madrid

Zhenjiang Hu 2017-02-19 10:15 LH 7378 from Sao Paolo (... Tokyo) 2017-02-25 6:55 JJ8081 to Sao Paolo (... Tokyo)

Mauro Jaskelioff 2017-02-19 07:30 from Buenos Aires 2017-02-24 18:30 to Rosario obs

Walter Guttmann 2017-02-10 11:45 AR2382 from Buenos Aires 2017-02-24 18:50 LA0905 to Santiago, then NZ

Carroll Morgan 2017-02-17 00:30 LA0906 from Santiago 2017-02-26 14:20 LA0911 to Santiago

Fritz Henglein 2017-02-18 09:00 UX045 from Madrid 2017-02-25 13:00 UA046 to Madrid

Carlos Camar\xE3o 2017-02-19 13:20 from Sao Paolo 2017-02-24 14:20 to Sao Paolo on G37631 local obs

Oleg Kiselyov 2017-02-19 12:20 LA902 from Santiago 2017-02-25 17:20 to GRU on JJ8037 obs

James McKinna 2017-02-18 11:25 AF0394 from Paris 2017-02-25 14:45 AF0393 to Paris obs

Exequiel Rivas TBD
TBD

local obs

Miguel Pagano 2017-02-20 07:55 from Cordoba 2017-02-24 16:45 to Cordoba local obs

Marcos Viera

obs

Juan Pablo Garcia Garland

local obs

Organizational and administrative matters

Friday morning, February 24, 2017.

Membership

These private matters are not recorded in the public version of the minutes.

Formal resolution

The members and observers of WG2.1 present at the 75th meeting, in Montevideo, express their gratitude to Alberto Pardo for making it truly a MEAT-ing

to remember, one where we were taken into the mysterious regions of "Otras Partes", whose true natures even now are yet to be revealed --- a topic for

future research. And his intense energy and dedication spurred us all, but especially himself, to a fever pitch of activity from which we are still recovering.

Aiding that recovery is of course that in our wonderful excursions we have seen for ourselves that Montevideo's position as the "Best city in Latin America

for Quality of Life" is fully justified (and, most importantly, that it has been officially judged -well- ahead of Buenos Aires and Santiago de Chile)

Next meetings:

M76 (Oct 16\x9620, 2017): Lesbos (Meertens); the Doodle will be sent around very soon.

M77 (Jul 18, 2018): NL/Germany? (Hinze).

M78 (Mar 2019) China/Australia/NZ/Japan (?).

Technical presentations in scheduled order

Carlos Camar\xE3o, Haskell: Ambiguity and Multi-Parameter Type Classes (Monday, February 20, 2017, 10:00):

We propose a simple definition to Haskell's ambiguity rule that allows ambiguity to have an intuitive, common sense meaning (existence of two or more instances of

the same name used in an expression). This allows support for multi-parameter type classes with no additional concepts such as functional dependencies. It also

allows overloading resolution to be defined and distinguished from ambiguity, type directed name resolution, and overloaded Ref instead of IORef and STRef.

Together with optional type classes, it supports overloaded record fields in a simple way. Together with instance modularization, it allows distinct instances of a type

for a type class, if defined and used in distinct modules, overall support for modular name scoping and newtype wrapping and unwrapping to be avoided.

Patrik Jansson, Sequential Decision Problems and Avoidability using Dependent Types (Monday, February 20, 2017, 11:05):

Paper preprint: http://www.cse.chalmers.se/~patrikj/papers/CompTheoryPolicyAdviceAvoidability_JFP_2016-11_preprint.pdf

The "slides" were written on flipcharts: here are some photographs of what was on them (and two earlier white-board presentations).

Abstract:

The talk is based on a paper presenting a computer-checked generic implementation for solving finite-horizon sequential decision problems. This is a wide class of

problems, including inter-temporal optimizations, knapsack, optimal bracketing, scheduling, etc. The implementation can handle time-step dependent control and

state spaces, and monadic representations of uncertainty (such as stochastic, non-deterministic, fuzzy, or combinations thereof). This level of genericity is

achievable in a programming language with dependent types (we have used both Idris and Agda). Dependent types are also the means that allow us to obtain a

formalization and computer-checked proof of the central component of our implementation: Bellman's principle of optimality and the associated backwards induction

algorithm. The formalization clarifies certain aspects of backwards induction and, by making explicit notions such as viability and reachability, can serve as a starting

point for a theory of controllability of monadic dynamical systems, commonly encountered in, e.g., climate impact research.

Jeremy Gibbons, Profunctor Optics: Modular Data Access (Monday, February 20, 2017, 12:03):

Data accessors allow one to read and write components of a data structure; examples include lenses for accessing the fields of a record, prisms for accessing the

variants of a union, and traversals for accessing the elements of a container. These data accessors are collectively known as optics; they are fundamental to

programs that manipulate complex data. Individual data accessors for simple data structures are easy to write, for example as pairs of "getter" and "setter" methods.

However, it is not obvious how to combine data accessors, in such a way that data accessors for a compound data structure are composed out of smaller data

accessors for the parts of that structure. Generally, one has to write a sequence of statements or declarations that navigate step by step through the data structure,

accessing one level at a time - which is to say, data accessors are traditionally not first-class citizens, combinable in their own right. We present a framework for

modular data access, in which individual data accessors for simple data structures may be freely combined to obtain more complex data accessors for compound

data structures. Data accessors become first-class citizens. The framework is based around the notion of profunctors, a flexible generalization of functions. (This is

joint work with Matthew Pickering and Nicolas Wu. Here is a draft of the slides.)

Walter Guttmann, An Algebraic Framework for Minimum Spanning Tree Problems (Monday, February 20, 2017, 14:40):

It is well known that Warshall's algorithm for transitive closures and Floyd's algorithm for all-pairs shortest paths are instances of a general dynamic-programming

algorithm based on semirings. Other instances solve the all-pairs widest path problem or convert finite automata to regular expressions. In this talk, I will show

similar (not quite as spectacular) results about Prim's algorithm for minimum spanning trees. The different instances do not vary in the algorithm, but in the

specification: the same algorithm solves a number of different problems. This continues work I presented at the G\xF6teborg meeting, and I will also show a

generalisation of relation algebras to model weighted graphs that came out of it. (Here are the slides of my talk.)

Oleg Kiselyov, Having an Effect (Monday, February 20, 2017, 15:59):

(Side-)Effects are the battle cry in what sometimes seems like a war between pure functional and imperative programming. Functional programmers charge

brandishing a monad -- a powerful weapon, judging by the exponentially proliferating monad tutorials and its appearances (however fleeting at times) in almost any

modern language, natural language included. Monads indeed have many uses and benefits. But this is not the whole story. The talk will try to tell a bigger story,

following the tantalizing lead: all the founding papers on monads, free monads, monad transformers, handlers, algebraic effects, etc. -- all of them, down to the title,

are about extensible interpreters. What we eventually find is the interaction -- between a client and a server, an interpreter and the interpreted code, an expression

and its context. The distinction between functional and imperative is hence contingent, an artifact of focusing on a small part of the interacting system. Revisiting the

origins of the field and recovering the insights and forgotten alternatives not only help with the wiser attitude towards monads. We see how they help make our

programs have the intended effect.

Doaitse Swierstra, Describing the ST Monad using Polymorphic Contexts; Type Rules for PC's. (Monday, February 20, 2017, 17:10):

We show how by an extension of the HM-typing discipline we can define the semantics of the ST-monad, so ST does not have to be built in.

In Gothenburg I presented a simpler motivation for having Polymorphic Contexts (see also paper). In Glasgow I asked for help in formulating the necessary type

rules. The are given in the a paper. The thing I want to discuss now is how to prove these rules correct. It seems that the normal approach using conventional type

judgements does not work, since types are only partially known.

Slides of Doaitse's talk

Fritz Henglein, Bird and Meertens in disguise (Tuesday, February 21, 2017, 9:03):

Futhark is a relatively recent purely functional array programming language based on second-order array combinators with constant-time array update. It generates

high-performance GPU-code competitive with and, in some cases, superior to handwritten OpenCL or CUDA code, without autotuning (yet). Amongst its tools for

achieving practically high performance is aggressive application of algebraic equalities for transformations including fusion, fission (vectorization) and streaming

chunking. The transformation rules are heavily pointed, but their pointless rendition reveals Bird and Meertens, lurking. This is speculative work ; it is based on work

on Futhark by Troels Henriksen and Cosmin Oancea with contributions by Martin Elsman and myself, which is to appear at PLDI '17. See the slides.

Mauro Jaskelioff, Algebraic Effects and Scoped Operations (Tuesday, February 21, 2017, 9:55):

Algebraic effects have many nice properties, but introduce some limitations when dealing with operations with scope. The root of the problem is that operations with

scope are treated as semantics, whereas ordinary algebraic operations are syntax. In this talk, I'll discuss an extension of the algebraic approach that allows us to

treat scoped operations as syntax, and analyse some of the consequences of doing so. This is joint work with Maciej Pir\xF3g, Tom Schrijvers, and Nicolas Wu.

(Here are the slides.)

James McKinna, On ringads and foldables (Tuesday, February 21, 2017, 11:01):

Foldable f is a class defined in the haskell library, with single method foldMap :: Monoid m => (a -> m) -> f a -> m which is analogous to an Eindhoven Quantifier (a

reduce over a collection, for a given Monoid structure measuring individuals in the collection)

Ringad is a class introduced by Jeremy after old work of Phil Wadler's, as class (MonadZero f, MonadPlus f) => Ringad f which supports the construction of empty,

aggregate collections, and hence a suitable target in which to interpret comprehension notation.

Theorem:

For a Functor f, f is Foldable iff forall a. Monoid a => Algebra f a

For a Monad f, f is a Ringad iff forall a. Algebra f a => Monoid a

This talk attempts to motivate, explain, and justify these characterisations, and thereby (definitionally) eliminate the Foldable and Ringad classes in favour of the

simpler ones of Monoid and Algebra, together with the idea of higher-order class constraint.

Work in progress: there are still some wrinkles and some loose ends.

Zhenjiang Hu, Synchronizing Concrete and Abstract Syntaxes using BiGUL (Tuesday, February 21, 2017, 11:45):

In this talk, I will show that BiGUL, a Haskell library for bidirectional programming, is useful for systematic development of synchronizers between concrete and

abstract syntaxes. Concrete syntax is designed to be programmer-friendly and provides convenient syntactic sugar, while abstract syntax is concise, structured, and

easily manipulable by the compiler back-end. Synchronizing these two syntaxes would enable us to gain both advantages, for example, for reporting the result of

compiler optimization done on abstract syntax to the programmer, who knows only friendly concrete syntax. See the slides (hu.pdf).

Jose Oliveira, Measuring probabilistic contracts (Tuesday, February 21, 2017, 14:01):

In the TRUST project we are trying to extend Alloy to make it a more comprehensive modelling tool for trustworthy software design. In particular, we wish to be able

to express faulty behaviour in software models, in a probabilistic way. Given the relational basis of Alloy, we thought of extending its underlying Boolean matrices to

stochastic matrices and of adapting the notion of contract validity accordingly. This talk will present a linear algebraic approach to "measuring" the validity of

contracts. In spite of its "algebraicity", there are difficulties in the approach that I would like to discuss. I believe this problem can be traced back to earlier work by

Carroll on probabilistic Hoare triples. (slides)

Tom Schrijvers, Efficient Compilation of Algebraic Effects and Handlers (Tuesday, February 21, 2017, 14:55):

The popularity of algebraic effect handlers as a programming language feature for user-defined computational effects, is steadily growing. Yet, even though efficient

runtime representations have already been studied, most handler-based programs are still much slower than hand-written code. In this paper we show that the

performance gap can be drastically narrowed (in some cases even closed) by means of type- and-effect-directed optimising compilation. Our approach consists of

two stages. Firstly, we combine elementary source-to-source transformations with judicious function specialisation in order to aggressively reduce handler

applications. Secondly, we show how to elaborate the source language into a handler-less target language in a way that incurs no overhead for pure computations.

This work comes with a practical implementation: an optimizing compiler from Effy, a small functional language with algebraic effects and handlers, to OCaml.

Experimental evaluation with this implementation demonstrates that in a number of benchmarks our approach eliminates much of the overhead of handlers and

yields competitive performance with hand-written OCaml code. This is joint work with Matija Pretnar, Amr Hany Saleh Shehata and Axel Faes.

Bernhard M\xF6ller, Algebraic approaches to rely/guarantee (RG) (Tuesday, February 21, 2017, 16:00):

This is ongoing work together with Tony Hoare, Martin E. M\xFCller and Jos\xE9 Oliveira. RG, initiated by Cliff Jones, is an important paradigm in verifying

concurrent programs: a program relies on \x93well-behaviour\x94 of its environment and in turn guarantees \x93well-behaviour\x94 of its own. There exist already

several algebraic formalisations of the RG. Most of them, however, deal only with the case that the guarantees are "absolute", unconnected to the rely part. We are

looking whether a recent streamlined approach based on residuals (or factors, as Roland Backhouse would call them) can be carried over to the general case. Here

are the slides.

Carroll Morgan, A new rule for almost-certain termination of probabilistic- and demonic programs. (Wednesday, February 22, 2017, 9:04):

In the last year or so there's been a sudden resurgence of interest in proof rules for almost-certain termination of probabilistic loops. This "arms race" consists of

making one's rule as general as possible, while preserving soundness of course, and then "reaching a termination that others cannot reach" by treating a well known

example that others don't handle. Some of the players in this competition are quite famous.

Annabelle McIver and I have competed in this game for some time but, spurred by the above activity, we re-entered the fray late last year with our own, new rule that

goes a little bit further than any of the others we know about. And we have found an intriguing open problem --- appealing to a completeness theorem from the

1950's shows that we can prove termination of the two-dimensional random walk in program logic... if only we could find the variant that the completeness result

says must exist. But we can't find that variant. Can you?

There's an arXiv of this work at https://arxiv.org/abs/1612.01091. But my presentation (if I get to make it) will be on a whiteboard or equivalent (eg flip chart).

Tom Schrijvers, ProbLog is Applicative (Wednesday, February 22, 2017, 11:00):

Probabilistic Programming Languages (PPLs) support constructions to natively express probability distributions, making it easier for researchers to develop, share

and reuse probabilistic models. They have a long history in both the functional (e.g., Anglican) and logic programming (e.g., ProbLog) paradigms. Unfortunately,

these efforts have been conducted mostly in isolation and little is known about the relative merits of the two approaches, creating much confusion for the un-initiated.

In this work we establish a common ground for both approaches in terms of algebraic models of probabilistic computation. It is already well-known that functional

PPLs conform to the monadic model. We show that ProbLog \x92s flavour of probabilistic computation is restricted to the applicative functor interface. This means

that functional PPLs afford greater expressiveness in terms of dynamic program structure, while ProbLog programs are inherently more amenable to static analysis

and thus afford faster inference. This is joint work with Alexander Vandenbroucke.

Jose Oliveira, First steps in a (linear) algebra of (quantum) functional programming (Wednesday, February 22, 2017, 11:43):

A few months ago my lab started a partnership (QuantaLab) with the nearby Iberian Nanotechnology Laboratory (INL) whose research programme includes

quantum computing. Thus introduced to this interesting field, I am trying to frame quantum functional programming in previous work on typed linear algebra of

programming (LAoP). While the latter shifted from functions / relations (standard in AoP) to stochastic matrices, the quantum setting calls for unitary (complex)

matrices and their rich algebra. I will talk about my first attempts to (polymorphically) type such (recursive) matrices and to introduce more structure in the definition

of quantum gates, usually described pointwise (at qubit-level) in the literature. In particular, reversibility can be described via techniques that we already know from

elsewhere (constant-complement functions, bidirectionalization etc). (slides)

Exequiel Rivas, Dioids and functional programming (Thursday, February 23, 2017, 9:04):

In previous work, the MonadPlus /Alternative type classes were presented as generalized near-semirings. In this talk, a new algebraic structure is introduced: dioids.

This new structure provides an account for the MonadPlus /Alternative type classes subject to the left-catch axiom. We construct the free dioid, and show some

partial results regarding the free MonadPlus /Alternative. This is joint work with Ezequiel Postan and Mauro Jaskelioff.

Marcos Viera, Safe and Lightweight Attribute Grammars for Haskell (Thursday, February 23, 2017, 9:37):

I presented a library that defines an EDSL for first-class attribute grammars that ensures a clean public interface for the user with simple types and simple error

messages that do not leak implementation details.

Oleg Kiselyov, Sound end efficient language-integrated query: the denotation of ORDER BY (Thursday, February 23, 2017, 11:00):

Language-integrated query systems like T-LINQ make relational operations on (generally external) data feel like the ordinary iteration over native arrays. As ordinary

programs, queries are type-checked, can be abstracted over and composed. To access relational database systems, queries are eventually translated into well-

formed, well-typed and efficient SQL. However, most existing language-integrated query systems implement only a small subset of relational operations supported

by modern databases. We introduce a full-featured language Quel that supports not only the standard selections, projections, unions and joins but also the

operations corresponding to SQL's ORDER BY and LIMIT. We present the denotational semantics of the language, which is, unlike SQL's, is compositional. Quel's

type system not only ensures by construction the intricate SQL validity constraints. It also prevents the accidental composition of hard-to-optimize queries. The

semantics leads to the normalization-by-evaluation process to produce the efficient SQL code. The denotational treatment goes hand in hand with our OCaml

embedding of Quel in the tagless-final style.

Zhenjiang Hu, Programming Derivatives -- Towards Change-Oriented Progarmming (Thursday, February 23, 2017, 11:37):

Change is essential and expensive in software development. Although a significant amount of work has been done on software change, its status as a scientific

discipline is still an open challenge. In this talk, I show that it is possible to treat software change as a first-class citizen, where we can directly program changes

through coding of derivatives.

Bernhard M\xF6ller, Functional modelling of geoinformation systems (GIS) (Thursday, February 23, 2017, 14:20):

I have reported on this in earlier meetings. By now our Haskell-based course on the subject, developed together with Sabine Timpf from the Augsburg Geography

Department, has become respectable and even relatively popular. I would show some main ideas, some project work by students and topics from an ongoing

master's thesis dealing with temporal aspects (moving bodies in a GIS). Here are the slides.

Location

TRYP Montevideo Hotel

Dr. H\xE9ctor Miranda 2361

Punta Carretas

11300 Montevideo

TRYP Hotel is situated in Punta Carretas neighbourhood, next to Montevideo Golf Club.

Schedule (subject to change)

The meeting will take place at Tryp Hotel.

The meeting room is situated at the ground floor (take the corridor on the left hand side of the hotel reception).

On Sunday, at 8pm we will meet at restaurant El Berret\xEDn at the corner of the streets Jos\xE9 Mar\xEDa Montero and Guip\xFAzcoa. Here is a map that

shows you the place. It is not far from Tryp Hotel. Say that you are coming to the tables reserved by Alberto Pardo.

Lunches from Monday to Thursday will be at Tryp hotel's restaurant.

Sessions will start at 9:00 on Monday and finish at noon on Friday.

Monday, Tuesday, and Thursday, the schedule is as follows:

session - 9:00 to 10:30

coffee break - 10:30 to 11:00

session - 11:00 to 12:30

lunch - 12:30 to 14:00

session - 14:00 to 15:30

coffee break at 15:30 to 16:00

session - 16:00 to 18:00

dinner

Wednesday and Friday we will only have sessions in the morning:

session - 9:00 to 10:30

coffee break - 10:30 to 11:00

session - 11:00 to 12:30

lunch - 12:30 to 14:00

Cost and Payment

The registration fee has to be payed in cash.

It will consist of: U$S 208 (US Dollars) + an amount for dinner at El Berret\xEDn (for those who go to the restaurant).

The fee includes the cost of the meeting room, coffeee breaks, lunches (from Monday to Thursday) and Sunday dinner.

My plan is to pay the global account at El Berret\xEDn, then divide it by the number of persons that go to and charge them that value as part of the fee. The fact

is that at night it is not possible to negotiate a menu with restaurants (like for lunch), but prices at El Berret\xEDn are quite reasonable.

Banquet

The banquet will take place on Thursday evening at Vi\xF1a Varela Zarranz, a winery situated just outside Montevideo. We will first have a guided visit to the

winery and then the dinner. We have transport to get there. The cost of the banquet is U$S 55 (US Dollars) per person.

Excursion

The excursion will be on Wednesday afternoon. The plan is to go to Punta del Este and surroundings. Exact details will be given during the meeting. We depend

a lot on the weather to choose the activities to do.

Accommodation

All room rates are final prices (exempt from taxes). In Uruguay hotel rates are usually given in US Dollars (U$S). In addition to the meeting's hotel, we list some

other alternatives in the near of TRYP Hotel. The list does not pretend to be complete.

TRYP Hotel has offered us the following special rates (per room, per night):

Single room - U$S 85,-

Double room - U$S 95,-

This includes: buffet breakfast, free Wi-Fi, fitness center, swimming pool and sauna.

To book a room at TRYP Hotel write an email to meliares@confort.com.uy mentioning that you come to "IFIP 2.1 event" in order to get the special offer.

Vivaldi Hotel

Blanca del Tabar\xE9 2903

Intercity Hotel

Ibiray 2398

Dazzler Hotel

21 de Setiembre 2752 Regency Golf

Solano Garcia 2473

BIT Design Hotel

Ram\xF3n Fernandez 265

Visa

If any of you requires a visa to travel to Uruguay, please tell me and I send you an invitation letter. EU, US and japanese citizens do not need a visa to come,

but on the other hand, e.g. chinese citizens do need. My experience (from previous events I organized) is that the visa procedure takes approx. one month. The

visa procedure must be started at an uruguayan consulate. I do not know if they require to do it personally or if it is possible by post. The following are the

requirements for a visa (taken from a page of our Ministry of Foreign Affairs):

to fill a form

invitation letter or hotel reservation

Passport (expiration date should be 6 months after arrival to Uruguay)

one photograph (passport size)

flight reservation

Cost: US$ 42.- (US Dollars).

How to get there

By plane.

Montevideo's airport ("Aeropuerto Internacional de Carrasco" or simply Carrasco) has direct flights to:

Madrid (Iberia and Air Europa)

Paris (Air France)

Miami (American Airlines)

Panama City (Copa Airlines)

S\xE3o Paulo (Guarulhos airport) (LATAM and GOL)

Rio de Janerio (LATAM)

Santago de Chile (LATAM and SKY Airline)

Buenos Aires (Aerolineas Argentinas and Amazonas)

Lima (Avianca)

If you come via Buenos Aires be careful that the flights from Buenos Aires to Montevideo are actually from Aeroparque (the domestic airport) and not from the

international one (Ezeiza). Air France is the unique airline that connects Ezeiza with Carrasco simply because the flight from Paris stops both in Carrasco and

Ezeiza. Except for a few cases, the destination of international flights to Buenos Aires is always Ezeiza. Tienda Leon is the company that performs the transfer

service (by coach or remise) between Ezeiza and Aeroparque.

By ferry. Buenos Aires and Montevideo are also connected by ferry. Buquebus is the company that performs the service. There are two alternatives:

Direct ferry from Buenos Aires to Montevideo.

Ferry from Buenos Aires to Colonia (a city in Uruguay) and then bus from Colonia to Montevideo. The combined ticket (ferry + bus) is sold altogether. In

case you fly to Buenos Aires and decide to come to Montevideo with ferry, then you have to go from Ezeiza to Buquebus' terminal in Buenos Aires' port.

The easiest way to do so is to take a remise (again from Tienda Leon).

How to get TRYP Hotel:

Airport Taxi. $U1330 (uruguayan pesos), approx U$S 47, the journey from the airport to the hotel.

Airport Transfer. $U 400 uruguayan pesos p/person, approx. U$S 14, the mini-bus departs only when there are at least 5 persons to take.

Bus DM1 from the airport. Take DM1, direction "Punta Carretas", at the bus stop that is close to the airport's entrance (arrivals sector). Continue till the

last stop (Punta Carretas Shopping Center). Walk back 50mts till the cross in front of the shopping's entrance, turn left and walk the street (it is Dr. Hector

Miranda). The hotel is at approx. 100mts.

From the port, if you come from Buenos Aires with the direct ferry: Take a regular taxi; the fare will cost around $U 220 (uruguayan pesos), approx. U$S

7,5.
From the bus station if you come from Buenos Aires with Buquebus via Colonia, or simply because you come by bus from Argentina or Brazil

- Take a regular taxi; the fare will cost around $U 190 (uruguayan pesos), approx. U$S 6.

- By bus: Take bus nr. 174 at the bus stop that is at the front of the bus terminal. Fare costs $U 30, 1 U$S.

Remise from the airport: remises are cheaper than Airport Taxi. I can phone the resmises so that they wait for you at the airport. Fare costs:

- U$1050 (pesos), approx. U$S 38, from the airport to the hotel

- U$ 850 (pesos), approx. U$S 30, from the hotel to the airport

Restaurant recommendations

Alberto recommends the following:

La Pulperia (Lagunillas and Colonel Mora)

Bar Tabare (Tabare and JLZ de San Martin)

La Perdiz (Guipuzcoa and Dr. Bolivar Balinas), behind the shopping. I never stayed there but I have some colleagues that recommended it to me. I

looked in TripAdvisor and in general the people liked it.

Mandolina (Guipuzcoa and Joaquin Nu\xF1ez), I went a pair of times for lunch and it is ok.

La Cantina del Puertito (Jose Luis Zorrilla de San Martin between Parva Domus and Tabare), never stayed there.

La Parrilla de Leo (Claudio Williman and Agr. Francisco J. Ros), I went many times there, it is ok.

Bar Lobo (Montero and Coronel Mora)

If you want to eat something faster, then you should try a "chivito". "Chivo" in spanish means young goat, but a chivito has no goat meat. It is a big sandwich

with a thin slice of cow meat and many other things (tomato, mayonese, eggs, sweet pepper, etc, etc). One cannot leave Uruguay without having tasted a

chivito. The traditional one is called Canadiense (canadian), although it has nothing to do with Canada (it is matter of name). Fritz told me he ate a chivito and

he liked a lot. Many restaurants prepare chivitos, in particular:

Chivitos Tiqui Taca (Coronel Mora and Gral. Gregorio Suarez), there are good.

La Pasiva (at the basement the shopping center)

Another shop at the top floor of the shopping center

-- JeremyGibbons - 24 Feb 2017

Attachments 12

Edit | Attach | Print version | History: r82 < r81 < r80 < r79 | Backlinks | View wiki text | Edit wiki text | More topic actions

Topic revision: r82 - 23 Mar 2017, TomSchrijvers

Copyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.

Ideas, requests, problems regarding Foswiki? Send feedback

IFIP21

IFIP WG 2.1

Scope Etc

Profile
Sponsoring an Observer

Algol Resources

Meetings
Previous Meetings

Next Meeting

Future Meetings

Scheduling Procedure

How to Organize

Members
List of Members

Members-only Matters

Purity-aware compilation required coercions as witnesses of subtyping

Eff

OCaml

ExEff

NoEff

Schrijvers
et al.

presented
at ESOP

2018
Schrijvers

et al.

published
in JFP
2020

Schrijvers
et al.

presented
at OOPSLA

2021

Adding polymorphism incurs significant overhead

SIMPLIFYING EXPLICIT SUBTYPING COERCIONS
IN A POLYMORPHIC CALCULUS WITH EFFECTS

FILIP KOPRIVEC a,b AND MATIJA PRETNAR a,b
aUniversity of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, SI-1000 Ljubljana,

Slovenia
b Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia

e-mail address: filip.koprivec@fmf.uni-lj.sie-mail address: matija.pretnar@fmf.uni-lj.si

Abstract. Algebraic effect handlers are becoming increasingly popular way of structuring

and reasoning about effectful computations, and their performance is often a concern. One

of the proposed approaches towards efficient compilation is tracking effect information

through explicit subtyping coercions. However, in the presence of polymorphism, these

coercions are compiled to additional arguments of compiled functions, incurring significant

overhead.
In this paper, we present a polymorphic effectful calculus, identify simplification phases

needed to reduce the number of unnecessary constraints, and prove they preserve the

semantics. In addition, we implement the simplification algorithm in the Eff language, and

evaluate its performance on a number of benchmarks. Though we do not prove optimality

of presented simplifications, the results show that the algorithm eliminates all the coercions,

resulting in a code as efficient as manually monomorphised one.

IntroductionRecent years have seen an increase in the number of programming languages that support

algebraic effect handlers [PP03, PP13]. With a widespread usage, the need for performance

is becoming ever more important. And there are two main ways for achieving it: an efficient

runtime [DWS+15, SDW+21], or an optimising compiler [SBO20, XL21, KKPS21], which

we focus on in this paper.Our recent work [KKPS21] has shown how an optimising compiler can take code written

using the full flexibility of handlers, infer precise information about which parts of it use effects

and which are pure, and produce code that matches conventional handcrafted one. However,

the approach tracks effect information through explicit subtyping coercions [KPS+20], and

for polymorphic functions, these need to be passed around as additional parameters. Since
Key words and phrases: Computational effects, Optimizing compilation, Algebraic effects, Polymorphic

compilation, Subtyping, Denotational semantics.This material is based upon work supported by the Air Force Office of Scientific Research under awards

number FA9550-17-1-0326 and FA9550-21-1-0024.

Preprint submitted toLogical Methods in Computer Science

© F. Koprivec and M. PretnarCC� Creative Commons

HANDLERS

Lindley & P.

A survey of
algebraic

effect handlers

soon

QUESTIONS?

