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tree, Nodex Sub, Direction dir) {
sub—>parent;

irection
Child[1 - dir]:
_root—>child[dir1;

===

= New_child;
if (new_child) 1

new_child—>parent = Sub:
}

’

new;root—>child[dir] = sub;

new;root—>parent = sub_parent;
Sub->parent - New_root;

if (sub_parent) 1

sub_parent—>child[sub == Sub_parent
Foelse {

—>right] = New_root:
tree->rpot -

NEw_root;

return NEw_root:
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We can employ a clever trick

Node* N

e .
Nodex nengﬁQ% = ‘>Child[irecti°”
SUb—>chilnra- child[dir?-

// red-black tTree€ node

typedef struct Node {
struct Nodex parent; // null for the rool node

union {
// Union so we can use —>left/—>right or —>child[0]/

struct 1
struct Nodex left;

struct Nodex right;

—>child[1]

¥
struct Nodex child[2];

Y
Color color;
int key;

1 Node;
b

-
e new_root;
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Or we can duplicate the code

let rotate_left = function
| Node (1, x, Node (rl, y, rr)) —=

Node (Node (1, X, ), y, rr)
| _ —> invalid_arg "rotate _left”

let rotate_right = function

| Node (Node (1L, Y, ), X, r) —>
Node (11, y, Node (lr, X, r))

| _ —> invalid_arg wrotate_right”

_/——* M
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X1, Xy, X3 € |

s bmm—

Jl sort with

Xa(1) S Xz2) S Xy (3)
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X1, Xy, X3 € |

e e

JJ sort with

Xp1) S Xgo) S X3y == P OChur(x, gy, X0y, Xz(3))
annsm— — actual
proof




Or we can use a simple and inefficient method

X1y Xy, X3 € | p': Schur(x, x,, x3)

revert the sort

JJ sort with 7 ﬂ as Schur
IS Invariant

Xp1) S Xgo) S X3y == P OChur(x, gy, X0y, Xz(3))
annsm— — actual
proof




S THERE A

BIGGER picture?










Symmetries form a group

Group G

 acarrierset G
e unitelemente : G

« multiplication * : G
. inverse(-)"!:G —

2 2
2

4 2
38 4

such that:

rerg=gre=g
+ (8FW) T k=g*(h*k)

. g*g =e

Schur's
inequality

Sym,; = {(123),(132), (213),
(231),(312),(321)}

S—— ——




Sets possesing a symmetry are captured with actions

(-action A

e acarrierset A
. amap @:G — A — A

such that:
e X=X

c @*h@®x=g® " ®x)

2 2
2

4 2
38 4

\
“ N
I®t=t

F®L=L
F®N({,x,t,) =NEF®L,x, F® 1)




For dependent sets, we employ indexed actions

A-action B
o acarrier family B : A — Set such that:
* dMap o ¢ @ y=1Yy

D:g:G)>x:A)->Bx—=>Bg®x) +» @"h® y=g®,,, (h®, y)

Schur's inequality

A=R’

T @ (X1, X, X3) = (X1 X2y X(3))

B(x;,x,,x3) = Schur(x;, x,, x3)

T & (p . ochur(x, x,, .X3)) — (q : Schur(xﬂ(l),xﬂ(z),xﬂ@)))
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A-action B
o acarrier family B : A — Set such that:
e amMap re® Y=Yy
®:(g:G) > x:A)—->Bx—>Bg®x) (@ =~ "=2®,,, h® y)
Schur's inequality ‘ I
A = R3 \
T @ (x19x29 x3) — (xyz(l)a-x

Tree (¢ .

E(xl, XZ, .X3) — SChur(xl, .%% b)

T & (p . ochur(x, x,, .X3)) — (q : Schur(xﬂ(l),xﬂ(z),xﬂ@)))




Maps between symmetric sets are equivariant

equivariantmapf: Ae- B
f:(x:A) = Bx
g®x)=g®, flx)

2
2 f 4
4 2 > (a4
o 1 P
v Pgpe @ — v Pgge @ —

2
2
4
NN
4
4




Construction of w.l.0.g




Construction of w.l.0.g

Theorem
Take:

« agroup G, a G-action A, and an A-indexed action B
e g canoniser assignmentmapc:A = G
e amapf: (x: Imc®) = Bxsuch that

VeeG,xeImc®. (g®@xeImc®) = f(g®@x)=g®, f(x)

Then, there exists a unique equivariant map w . A @ B extending f, defined as:

w(x) = (cx)" ' ® flex @ x)




Can we reduce the set of canonical elements?

Imc® ={cx®x|xe€A)

T




Can we reduce the set of canonical elements?

Imc® ={cx®x|xe€A)

Fixc®={x€eA|cx®x=x)




Can we reduce the set of canonical elements?

Imc® ={cx®x|xe€A)

Fixc®={x€eA|cx®x=x)

Kerc={x€A|cx=¢e}




Can we reduce the set of canonical elements?

Imc® ={cx®x|xe€A)
UI
Fixc®={x€eA|lcx®x=x)

Kerc={x€A|cx=¢e}




Can we reduce the set of canonical elements?

Imc® ={cx®x|xe€A)
UI
FiXE_@E__:miXEA lcx ® x = X}
UI
Kerc={x€A|cx=¢e}




When do the converses hold?

Imc® ={cx®x|xe€A)
fl
Fixc®={x€eA|lcx®x=x)

Nl
Kerc={x€A|cx=¢e}




When do the converses hold?

Imc® ={cx®x|xe€A)

(Al < c®is iIdempotent

Fixc®={x€eA|cx®x=x)
fl
Kerc={x€A|cx=¢e}




When do the converses hold?

Imc® ={cx®x|xe€A)

(Al < c®is iIdempotent

Fixc®={x€eA|cx®x=x)

()| < Ais semi-regular

Kerc={x€A|cx=¢e}




When do the converses hold?

Imc®={cx®@x|xe€A)
fl
Kerc={x€A|cx=e}




When do the converses hold?

Imc®={cx®@x|xe€A)

()l @ Vx,clecx® x) =e

Kerc={x€A|cx=e}




When do the converses hold?

Imc®={cx®@x|xe€A)

()l @ Vx,clecx® x) =e

Kerc={x€A|cx=e}




Our principle implies Harrison's tactics

(]
e
\t“
=,
-
@,
.
)
C
[
|l

R




Our principle implies Harrison's tactics

P has an Syms-indexed action

—|

R




Our principle implies Harrison's tactics

P has an Syms-indexed action

|

R




What's next?




What's next?

Jelelp

e More examples
e IMmplementation

e eI



What's next?

Jelelp

e More examples
e IMmplementation

e i —— maee e

later
e efficiency
e programming language
e symmetric data types




