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// Get the vector repres
enting the chosen direct

ion 

GameManager.prototype.ge
tVector = function (dire

ction) { 

  // Vectors representin
g tile movement 

  var map = { 
    0: { x: 0,  y: -1 },

 // Up 

    1: { x: 1,  y: 0 }, 
 // Right 

    2: { x: 0,  y: 1 }, 
 // Down 

    3: { x: -1, y: 0 }  
 // Left 

  }; 

  return map[direction];
 

};
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 // Down 
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 // Left 
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  return map[direction];
 

};

// 0: up, 1: right, 2: down, 3: left var vector     = this.getVector(direction); 
var traversals = this.buildTraversals(vector); 
// Traverse the grid in the right direction and move tiles 
traversals.x.forEach(function (x) {   traversals.y.forEach(function (y) {     cell = { x: x, y: y };     tile = self.grid.cellContent(cell);     if (tile) {       var positions = self.findFarthestPosition(cell, vector); 

      var next      = self.grid.cellContent(positions.next);       // Only one merger per row traversal? 
      if (next && next.value === tile.value && !next.mergedFrom) { 
        var merged = new Tile(positions.next, tile.value * 2); 
        merged.mergedFrom = [tile, next]; ... 
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In self-balancing search trees, we employ left rotations
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Node* rotate_subtree(Tree* tree, Node* sub, Direction dir) { 
    Node* sub_parent = sub->parent;     // 1 - dir is the opposite direction     Node* new_root = sub->child[1 - dir]; 
    Node* new_child = new_root->child[dir];     sub->child[1 - dir] = new_child;     if (new_child) {         new_child->parent = sub;     } 

    new_root->child[dir] = sub; 
    new_root->parent = sub_parent;     sub->parent = new_root;     if (sub_parent) {         sub_parent->child[sub == sub_parent->right] = new_root; 

    } else {         tree->root = new_root;     } 

    return new_root; }
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Node* rotate_subtree(Tree* tree, Node* sub, Direction dir) { 
    Node* sub_parent = sub->parent;     // 1 - dir is the opposite direction     Node* new_root = sub->child[1 - dir]; 
    Node* new_child = new_root->child[dir];     sub->child[1 - dir] = new_child;     if (new_child) {         new_child->parent = sub;     } 
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    return new_root; }

// red-black tree node 

typedef struct Node { 

    struct Node* parent;
 // null for the root no

de 

    union { 
        // Union so we c

an use ->left/->right or
 ->child[0]/->child[1] 

        struct { 
            struct Node*

 left; 

            struct Node*
 right; 

        }; 
        struct Node* chi

ld[2]; 

    }; 
    Color color; 
    int key; 
} Node;
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Merging in other directions is symmetricOr we can duplicate the code

  let rotate_left = func
tion 

    | Node (l, x, Node (
rl, y, rr)) -> 

        Node (Node (l, x
, rl), y, rr) 

    | _ -> invalid_arg "
rotate_left" 

  let rotate_right = fun
ction 

    | Node (Node (ll, y,
 lr), x, r) -> 

        Node (ll, y, Nod
e (lr, x, r)) 

    | _ -> invalid_arg "
rotate_right"
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Mathematical proofs often feature wlog assumptions

Theorem (Schur's inequality). 
For all  and , we have x, y, z ≥ 0 n ∈ ℕ

xn(x − y)(x − z) + yn(y − x)(y − z) + zn(z − x)(z − y) ≥ 0
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Harrison (TPHOLs 2009) discussed wlog in the context of HOL

Without Loss of Generality

John Harrison

Intel Corporation, JF1-132111 NE 25th Avenue, Hillsboro OR 97124, USAjohnh@ichips.intel.com

Abstract. One sometimes reads in a mathematical proof that a certain assump-

tion can be made ‘without loss of generality’ (WLOG). In other words, it is

claimed that considering what first appears only a special case does neverthe-

less suffice to prove the general result. Typically the intuitive justification for this

is that one can exploit symmetry in the problem. We examine how to formalize

such ‘WLOG’ arguments in a mechanical theorem prover. Geometric reasoning

is particularly rich in examples and we pay special attention to this area.1 Introduction
Mathematical proofs sometimes state that a certain assumption can be made ‘without

loss of generality’, often abbreviated to ‘WLOG’. The phase suggest that although mak-

ing the assumption at first sight only proves the theorem in a more restricted case, this

does nevertheless justify the theorem in full generality. What is the intuitive justification

for this sort of reasoning? Occasionally the phrase covers situations where we neglect

special cases that are obviously trivial for other reasons. But more usually it suggests

the exploitation of symmetry in the problem. For example, consider Schur’s inequality,

which asserts that for any nonnegative real numbers a, b and c and integer k ≥ 0 one

has 0 ≤ ak(a− b)(b− c) + bk(b− a)(b− c) + ck(c− a)(c− b). A typical proof might

begin:

Without loss of generality, let a ≤ b ≤ c.If asked to spell this out in more detail, we might say something like:Since ≤ is a total order, the three numbers must be ordered somehow, i.e. we

must have (at least) one of a ≤ b ≤ c, a ≤ c ≤ b, b ≤ a ≤ c, b ≤ c ≤ a,

c ≤ a ≤ b or c ≤ b ≤ a. But the theorem is completely symmetric between

a, b and c, so each of these cases is just a version of the other with a change of

variables, and we may as well just consider one of them.Suppose that we are interested in formalizing mathematics in a mechanical theorem

prover. Generally speaking, for an experienced formalizer it’s rather routine to take an

existing proof and construct a formal counterpart, even though it may require a great

deal of work to get things just right and encourage the proof assistant check all the

details. But with such ‘without loss of generality’ constructs, it’s not immediately ob-

vious what the formal counterpart should be. We can plausibly suggest two possible

formalizations:

S. Berghofer et al. (Eds.): TPHOLs 2009, LNCS 5674, pp. 43–59, 2009.
c⃝ Springer-Verlag Berlin Heidelberg 2009
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44 J. Harrison

– The phrase may be an informal shorthand saying ‘we should really do 6 very similar

proofs here, but if we do one, all the others are exactly analogous and can be left to

the reader’.
– The phrase may be asserting that ‘by a general logical principle, the apparently

more general case and the special WLOG case are in fact equivalent (or at least the

special case implies the general one)’.

The former point of view can be quite natural in a computer proof assistant. If we

have a proof script covering one of the 6 cases, we might simply perform a 6-way

case-split and for each case use a duplicate of the initial script, changing the names of

variables systematically in an editor. Indeed, if we have a programmable proof assistant,

it would be more elegant to write a general parametrized proof script that we could use

for all 6 cases with different parameters. This sort of programming is exactly the kind

of thing that LCF-style systems [3] like HOL [2] are designed to make easy via their

‘metalanguage’ ML, and sometimes its convenience makes it irresistible. However, this

approach is open to criticism on at least three grounds:

– Ugly/clumsy
– Inefficient
– Not faithful to the informal proof.

Indeed, it seems unnatural, even with the improvement of using a parametrized script, to

perform essentially the same proof 6 different times, and if each proof takes a while to

run, it could waste computer resources. And it is arguably not what the phrase ‘without

loss of generality’ is meant to conjure up. If the book had intended that interpretation, it

would probably have said something like ‘the other cases are similar and are left to the

reader’. So let us turn to how we might formalize and use a general logical principle.

2 A HOL Light Proof of Schur’s Inequality

In fact, in HOL Light there is already a standard theorem with an analogous principle

for a property of two real numbers:

REAL_WLOG_LE =

|- (∀x y. P x y ⇔ P y x) ∧

(∀x y. x <= y ⇒ P x y)

⇒ (∀x y. P x y)

This asserts that for any property P of two real numbers, if the property is symmetric

between those two numbers (∀x y. P x y ⇔ P y x) and assuming x ≤ y the property

holds (∀x y. x ≤ y ⇒ P x y), then we can conclude that it holds for all real numbers

(∀x y. P x y). In order to tackle the Schur inequality we will prove a version for

three variables. Our chosen formulation is quite analogous, but using a more minimal

formulation of symmetry between all three variables:

REAL_WLOG_3_LE =

|- (∀x y z. P x y z ⇒ P y x z ∧ P x z y) ∧

(∀x y z. x <= y ∧ y <= z ⇒ P x y z)

⇒ (∀x y z. P x y z)
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which asserts that for any nonnegative real numbers a, b and c and integer k ≥ 0 one

has 0 ≤ ak(a− b)(b− c) + bk(b− a)(b− c) + ck(c− a)(c− b). A typical proof might

begin:

Without loss of generality, let a ≤ b ≤ c.If asked to spell this out in more detail, we might say something like:Since ≤ is a total order, the three numbers must be ordered somehow, i.e. we

must have (at least) one of a ≤ b ≤ c, a ≤ c ≤ b, b ≤ a ≤ c, b ≤ c ≤ a,

c ≤ a ≤ b or c ≤ b ≤ a. But the theorem is completely symmetric between

a, b and c, so each of these cases is just a version of the other with a change of

variables, and we may as well just consider one of them.Suppose that we are interested in formalizing mathematics in a mechanical theorem

prover. Generally speaking, for an experienced formalizer it’s rather routine to take an

existing proof and construct a formal counterpart, even though it may require a great

deal of work to get things just right and encourage the proof assistant check all the

details. But with such ‘without loss of generality’ constructs, it’s not immediately ob-

vious what the formal counterpart should be. We can plausibly suggest two possible

formalizations:
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– The phrase may be an informal shorthand saying ‘we should really do 6 very similar

proofs here, but if we do one, all the others are exactly analogous and can be left to

the reader’.
– The phrase may be asserting that ‘by a general logical principle, the apparently

more general case and the special WLOG case are in fact equivalent (or at least the

special case implies the general one)’.

The former point of view can be quite natural in a computer proof assistant. If we

have a proof script covering one of the 6 cases, we might simply perform a 6-way

case-split and for each case use a duplicate of the initial script, changing the names of

variables systematically in an editor. Indeed, if we have a programmable proof assistant,

it would be more elegant to write a general parametrized proof script that we could use

for all 6 cases with different parameters. This sort of programming is exactly the kind

of thing that LCF-style systems [3] like HOL [2] are designed to make easy via their

‘metalanguage’ ML, and sometimes its convenience makes it irresistible. However, this

approach is open to criticism on at least three grounds:

– Ugly/clumsy
– Inefficient
– Not faithful to the informal proof.

Indeed, it seems unnatural, even with the improvement of using a parametrized script, to

perform essentially the same proof 6 different times, and if each proof takes a while to

run, it could waste computer resources. And it is arguably not what the phrase ‘without

loss of generality’ is meant to conjure up. If the book had intended that interpretation, it

would probably have said something like ‘the other cases are similar and are left to the

reader’. So let us turn to how we might formalize and use a general logical principle.

2 A HOL Light Proof of Schur’s Inequality

In fact, in HOL Light there is already a standard theorem with an analogous principle

for a property of two real numbers:

REAL_WLOG_LE =

|- (∀x y. P x y ⇔ P y x) ∧

(∀x y. x <= y ⇒ P x y)

⇒ (∀x y. P x y)

This asserts that for any property P of two real numbers, if the property is symmetric

between those two numbers (∀x y. P x y ⇔ P y x) and assuming x ≤ y the property

holds (∀x y. x ≤ y ⇒ P x y), then we can conclude that it holds for all real numbers

(∀x y. P x y). In order to tackle the Schur inequality we will prove a version for

three variables. Our chosen formulation is quite analogous, but using a more minimal

formulation of symmetry between all three variables:

REAL_WLOG_3_LE =

|- (∀x y z. P x y z ⇒ P y x z ∧ P x z y) ∧

(∀x y z. x <= y ∧ y <= z ⇒ P x y z)
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case-split and for each case use a duplicate of the initial script, changing the names of

variables systematically in an editor. Indeed, if we have a programmable proof assistant,

it would be more elegant to write a general parametrized proof script that we could use

for all 6 cases with different parameters. This sort of programming is exactly the kind

of thing that LCF-style systems [3] like HOL [2] are designed to make easy via their

‘metalanguage’ ML, and sometimes its convenience makes it irresistible. However, this

approach is open to criticism on at least three grounds:

– Ugly/clumsy
– Inefficient
– Not faithful to the informal proof.

Indeed, it seems unnatural, even with the improvement of using a parametrized script, to

perform essentially the same proof 6 different times, and if each proof takes a while to

run, it could waste computer resources. And it is arguably not what the phrase ‘without

loss of generality’ is meant to conjure up. If the book had intended that interpretation, it

would probably have said something like ‘the other cases are similar and are left to the

reader’. So let us turn to how we might formalize and use a general logical principle.

2 A HOL Light Proof of Schur’s Inequality

In fact, in HOL Light there is already a standard theorem with an analogous principle

for a property of two real numbers:
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|- (∀x y. P x y ⇔ P y x) ∧

(∀x y. x <= y ⇒ P x y)

⇒ (∀x y. P x y)

This asserts that for any property P of two real numbers, if the property is symmetric
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holds (∀x y. x ≤ y ⇒ P x y), then we can conclude that it holds for all real numbers
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– The phrase may be an informal shorthand saying ‘we should really do 6 very similar

proofs here, but if we do one, all the others are exactly analogous and can be left to

the reader’.
– The phrase may be asserting that ‘by a general logical principle, the apparently

more general case and the special WLOG case are in fact equivalent (or at least the

special case implies the general one)’.

The former point of view can be quite natural in a computer proof assistant. If we

have a proof script covering one of the 6 cases, we might simply perform a 6-way

case-split and for each case use a duplicate of the initial script, changing the names of

variables systematically in an editor. Indeed, if we have a programmable proof assistant,

it would be more elegant to write a general parametrized proof script that we could use

for all 6 cases with different parameters. This sort of programming is exactly the kind

of thing that LCF-style systems [3] like HOL [2] are designed to make easy via their

‘metalanguage’ ML, and sometimes its convenience makes it irresistible. However, this

approach is open to criticism on at least three grounds:

– Ugly/clumsy
– Inefficient
– Not faithful to the informal proof.

Indeed, it seems unnatural, even with the improvement of using a parametrized script, to

perform essentially the same proof 6 different times, and if each proof takes a while to

run, it could waste computer resources. And it is arguably not what the phrase ‘without

loss of generality’ is meant to conjure up. If the book had intended that interpretation, it

would probably have said something like ‘the other cases are similar and are left to the

reader’. So let us turn to how we might formalize and use a general logical principle.

2 A HOL Light Proof of Schur’s Inequality

In fact, in HOL Light there is already a standard theorem with an analogous principle

for a property of two real numbers:

REAL_WLOG_LE =
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(∀x y. x <= y ⇒ P x y)

⇒ (∀x y. P x y)

This asserts that for any property P of two real numbers, if the property is symmetric

between those two numbers (∀x y. P x y ⇔ P y x) and assuming x ≤ y the property

holds (∀x y. x ≤ y ⇒ P x y), then we can conclude that it holds for all real numbers

(∀x y. P x y). In order to tackle the Schur inequality we will prove a version for

three variables. Our chosen formulation is quite analogous, but using a more minimal

formulation of symmetry between all three variables:
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special cases that are obviously trivial for other reasons. But more usually it suggests

the exploitation of symmetry in the problem. For example, consider Schur’s inequality,

which asserts that for any nonnegative real numbers a, b and c and integer k ≥ 0 one

has 0 ≤ ak(a− b)(b− c) + bk(b− a)(b− c) + ck(c− a)(c− b). A typical proof might

begin:

Without loss of generality, let a ≤ b ≤ c.If asked to spell this out in more detail, we might say something like:Since ≤ is a total order, the three numbers must be ordered somehow, i.e. we

must have (at least) one of a ≤ b ≤ c, a ≤ c ≤ b, b ≤ a ≤ c, b ≤ c ≤ a,

c ≤ a ≤ b or c ≤ b ≤ a. But the theorem is completely symmetric between

a, b and c, so each of these cases is just a version of the other with a change of

variables, and we may as well just consider one of them.Suppose that we are interested in formalizing mathematics in a mechanical theorem

prover. Generally speaking, for an experienced formalizer it’s rather routine to take an

existing proof and construct a formal counterpart, even though it may require a great

deal of work to get things just right and encourage the proof assistant check all the

details. But with such ‘without loss of generality’ constructs, it’s not immediately ob-
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– The phrase may be an informal shorthand saying ‘we should really do 6 very similar

proofs here, but if we do one, all the others are exactly analogous and can be left to

the reader’.
– The phrase may be asserting that ‘by a general logical principle, the apparently

more general case and the special WLOG case are in fact equivalent (or at least the

special case implies the general one)’.

The former point of view can be quite natural in a computer proof assistant. If we

have a proof script covering one of the 6 cases, we might simply perform a 6-way

case-split and for each case use a duplicate of the initial script, changing the names of

variables systematically in an editor. Indeed, if we have a programmable proof assistant,

it would be more elegant to write a general parametrized proof script that we could use

for all 6 cases with different parameters. This sort of programming is exactly the kind

of thing that LCF-style systems [3] like HOL [2] are designed to make easy via their

‘metalanguage’ ML, and sometimes its convenience makes it irresistible. However, this

approach is open to criticism on at least three grounds:

– Ugly/clumsy
– Inefficient
– Not faithful to the informal proof.

Indeed, it seems unnatural, even with the improvement of using a parametrized script, to

perform essentially the same proof 6 different times, and if each proof takes a while to

run, it could waste computer resources. And it is arguably not what the phrase ‘without

loss of generality’ is meant to conjure up. If the book had intended that interpretation, it

would probably have said something like ‘the other cases are similar and are left to the

reader’. So let us turn to how we might formalize and use a general logical principle.

2 A HOL Light Proof of Schur’s Inequality

In fact, in HOL Light there is already a standard theorem with an analogous principle

for a property of two real numbers:

REAL_WLOG_LE =

|- (∀x y. P x y ⇔ P y x) ∧

(∀x y. x <= y ⇒ P x y)

⇒ (∀x y. P x y)

This asserts that for any property P of two real numbers, if the property is symmetric

between those two numbers (∀x y. P x y ⇔ P y x) and assuming x ≤ y the property

holds (∀x y. x ≤ y ⇒ P x y), then we can conclude that it holds for all real numbers

(∀x y. P x y). In order to tackle the Schur inequality we will prove a version for

three variables. Our chosen formulation is quite analogous, but using a more minimal

formulation of symmetry between all three variables:

REAL_WLOG_3_LE =

|- (∀x y z. P x y z ⇒ P y x z ∧ P x z y) ∧

(∀x y z. x <= y ∧ y <= z ⇒ P x y z)

⇒ (∀x y z. P x y z)
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⟹

⟹
⟹

x1, x2, x3 ∈ ℝ

xπ(1) ≤ xπ(2) ≤ xπ(3) p : 𝚂𝚌𝚑𝚞𝚛(xπ(1), xπ(2), xπ(3))

p′￼ : 𝚂𝚌𝚑𝚞𝚛(x1, x2, x3)

sort with π

actual 
proof

revert the sort 
as  

is invariant
𝚂𝚌𝚑𝚞𝚛
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Symmetries form a group

• a carrier set  
• unit element  
• multiplication  
• inverse  

such that: 
•  
•  
•

G
e : G
* : G → G → G

( ⋅ )−1 : G → G

e * g = g * e = g
(g * h) * k = g * (h * k)
g * g−1 = e

2

2

4

8

2

2

4

Dih4 = ⟨σx, ρ90∘ ∣ ⋯⟩ Sym2 = {I, F}
Sym3 = {(123), (132), (213),

(231), (312), (321)}

Group G

Schur's 
inequality



Sets possesing a symmetry are captured with actions

• a carrier set  
• a map  

such that: 
•  
•

A
⊛ : G → A → A

e ⊛ x = x
(g * h) ⊛ x = g ⊛ (h ⊛ x)

2

2

4

8

2

2

4

σx ⊛ [ti,j]ij = [t4−i,j]ij

ρ90∘ ⊛ [ti,j]ij = [t4−j,i]ij

I ⊛ t = t
F ⊛ L = L

F ⊛ N(t1, x, t2) = N(F ⊛ t2, x, F ⊛ t1)

-action G A



For dependent sets, we employ indexed actions

• a carrier family  
• a map 

 

such that: 
•  
•

B : A → Set

⊛ : (g : G) → (x : A) → Bx → B(g ⊛ x)
e ⊛x y = y
(g * h) ⊛x y = g ⊛h⊛x (h ⊛x y)

A = ℝ3

π ⊛ (x1, x2, x3) = (xπ(1), xπ(2), xπ(3))

-action A B

B(x1, x2, x3) = 𝚂𝚌𝚑𝚞𝚛(x1, x2, x3)
π ⊛ (p : 𝚂𝚌𝚑𝚞𝚛(x1, x2, x3)) = (q : 𝚂𝚌𝚑𝚞𝚛(xπ(1), xπ(2), xπ(3)))

Schur's inequality
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Tree (⊑ : Ord) (a ⊑ b) 



Maps between symmetric sets are equivariant

 f : (x : A) → Bx
f(g ⊛ x) = g ⊛x f(x)

equivariant map f : A ⊛→ B

2 2 4 8

2 2 4

2 4 8

2 4

4

4

2

4

8

2

4

4

4

2

2

4

8

2

2

4

 
→
f

 
→
f

↓ ρ90∘ ⊛ − ↓ ρ90∘ ⊛ −



Construction of w.l.o.g

B

B

A

G

Im c⊛

c

w

c⊛ = x ↦ cx ⊛ x y ↦ (cx)−1 ⊛ y

f



Construction of w.l.o.g

Theorem 
Take: 
• a group , a -action , and an -indexed action  
• a canoniser assignment map  
• a map  such that 

 

Then, there exists a unique equivariant map  extending , defined as: 

G G A A B
c : A → G

f : (x : Im c⊛) → Bx
∀g ∈ G, x ∈ Im c⊛ . (g ⊛ x ∈ Im c⊛) ⟹ f(g ⊛ x) = g ⊛x f(x)

w : A ⊛→ B f
w(x) := (cx)−1 ⊛cx⊛x f(cx ⊛ x)
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 is idempotent⇔ c⊛

 is semi-regular⇐ A
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Our principle implies Harrison's tactics

44 J. Harrison

– The phrase may be an informal shorthand saying ‘we should really do 6 very similar

proofs here, but if we do one, all the others are exactly analogous and can be left to

the reader’.
– The phrase may be asserting that ‘by a general logical principle, the apparently

more general case and the special WLOG case are in fact equivalent (or at least the

special case implies the general one)’.

The former point of view can be quite natural in a computer proof assistant. If we

have a proof script covering one of the 6 cases, we might simply perform a 6-way

case-split and for each case use a duplicate of the initial script, changing the names of

variables systematically in an editor. Indeed, if we have a programmable proof assistant,

it would be more elegant to write a general parametrized proof script that we could use

for all 6 cases with different parameters. This sort of programming is exactly the kind

of thing that LCF-style systems [3] like HOL [2] are designed to make easy via their

‘metalanguage’ ML, and sometimes its convenience makes it irresistible. However, this

approach is open to criticism on at least three grounds:

– Ugly/clumsy
– Inefficient
– Not faithful to the informal proof.

Indeed, it seems unnatural, even with the improvement of using a parametrized script, to

perform essentially the same proof 6 different times, and if each proof takes a while to

run, it could waste computer resources. And it is arguably not what the phrase ‘without

loss of generality’ is meant to conjure up. If the book had intended that interpretation, it

would probably have said something like ‘the other cases are similar and are left to the

reader’. So let us turn to how we might formalize and use a general logical principle.

2 A HOL Light Proof of Schur’s Inequality

In fact, in HOL Light there is already a standard theorem with an analogous principle

for a property of two real numbers:

REAL_WLOG_LE =

|- (∀x y. P x y ⇔ P y x) ∧

(∀x y. x <= y ⇒ P x y)

⇒ (∀x y. P x y)

This asserts that for any property P of two real numbers, if the property is symmetric

between those two numbers (∀x y. P x y ⇔ P y x) and assuming x ≤ y the property

holds (∀x y. x ≤ y ⇒ P x y), then we can conclude that it holds for all real numbers

(∀x y. P x y). In order to tackle the Schur inequality we will prove a version for

three variables. Our chosen formulation is quite analogous, but using a more minimal

formulation of symmetry between all three variables:

REAL_WLOG_3_LE =

|- (∀x y z. P x y z ⇒ P y x z ∧ P x z y) ∧

(∀x y z. x <= y ∧ y <= z ⇒ P x y z)

⇒ (∀x y z. P x y z)
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 has an -indexed actionP Sym3
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f : (x, y, z) : Ker c → P(x, y, z)
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