SYMMETRIC
PROGRAMMING

Matija Pretnar Ohad Kammar
University of Ljubljana University of Edinburgh



In 2048, player merges tiles of by sliding them together




In 2048, player merges tiles of by sliding them together




Merging in other directions is symmetric




Merging in other directions is symmetric




We can employ a clever trick




We can employ a clever trick

// Get the vector representing the chosen direction
GameManager.prototype.getVector = function (direction) {
ting tile movement

// Right




We can employ a clever trick

// Get the vector representing the chosen direction
_ function (direction) {

GameManager.prototype.getVector =
// Vecto™~ renresenting tile movement

var map // 0: up, 1.
0: { ) var VeCtér .

1: 1 var traversais

2: 4 // Tr
] dvers

¥

return
¥
1f (tile) {
Var pOSitiOnS




We can employ a clever trick

// Get the vector representing the chosen direction
_ function (direction) {

GameManager.prototype.getVector =
// Vecto™~ renresenting tile movement

var map // 0: up, 1.
0: { ) var VeCtér .

1: 1 var traversais

2: 4 // Tr
] dvers

¥

return
¥
1f (tile) {
Var pOSitiOnS

(Cgllr VEctor) :
ltlons.next). ’




We can employ a clever trick

// Get the vector representing the chosen direction
_ function (direction) {

GameManager.prototype.getVector =
// Vecto™~ renresenting tile movement

var map // 0: up, 1.
0: { ) var VeCtér .

1: 1 var traversais

2: 4 // Tr
] dvers

¥

return
¥
1f (tile) {
Var pOSitiOnS

(Cgllr VEctor) :
ltlons.next). ’




Or we can use a simple and inefficient method




Or we can use a simple and inefficient method




Or we can use a simple and inefficient method




Or we can use a simple and inefficient method




In self-balancing search trees, we employ left rotations




In self-balancing search trees, we employ left rotations

/ T
A




Rotating in the other direction is symmetric

\
A,




Rotating in the other direction is symmetric

AA




We can employ a clever trick




We can employ a clever trick

tree, Nodex Sub, Direction dir) {
sub—>parent;

irection
Child[1 - dir]:
_root—>child[dir1;

===

= New_child;
if (new_child) 1

new_child—>parent = Sub:
}

’

new;root—>child[dir] = sub;

new;root—>parent = sub_parent;
Sub->parent - New_root;

if (sub_parent) 1

sub_parent—>child[sub == Sub_parent
Foelse {

—>right] = New_root:
tree->rpot -

NEw_root;

return NEw_root:

\




We can employ a clever trick

Nodex New_root = ' dir]:
Nodex New_chilg = ~>child[dir] .

===

= New_child;
if (new_child) 1

new_child—>parent = Sub:
}

’

new;root—>child[dir] = sub;

new;root—>parent = sub_parent;
Sub->parent - New_root;

if (sub_parent) 1

sub_parent—>child[sub == Sub_parent
Foelse {

—>right] = New_root:
tree->rpot -

NEw_root;

return NEw_root:

\




We can employ a clever trick

Node* N

e .
Nodex nengﬁQ% = ‘>Child[irecti°”
SUb—>chilnra- child[dir?-

// red-black tTree€ node

typedef struct Node {
struct Nodex parent; // null for the rool node

union {
// Union so we can use —>left/—>right or —>child[0]/

struct 1
struct Nodex left;

struct Nodex right;

—>child[1]

¥
struct Nodex child[2];

Y
Color color;
int key;

1 Node;
b

-
e new_root;

\




We can employ a clever trick

Node* N

e .
Nodex nengﬁQ% = ‘>Child[irecti°”
SUb—>chilnra- child[dir?-

// red-black tTree€ node

typedef struct Node {
struct Nodex parent; // null for the rool node

union 1
// Union so we can use —>left/—>right or _>child[0]

struct 1
struct Nodex left;

struct Nodex right;

/—>child[1]

¥
struct Nodex child[2];

Y
Color color;
int key;

1 Node;
b

-
e new_root;

\




Or we can duplicate the code

let rotate_left = function
| Node (1, x, Node (rl, y, rr)) —=

Node (Node (1, X, ), y, rr)
| _ —> invalid_arg "rotate _left”

let rotate_right = function

| Node (Node (1L, Y, ), X, r) —>
Node (11, y, Node (lr, X, r))

| _ —> invalid_arg wrotate_right”

_/——* M




Or we can use a simple and inefficient method

\
A "




Or we can use a simple and inefficient method




Or we can use a simple and inefficient method

\
A "



Or we can
! :
se a simple and inefficient method
®

‘ RN ‘\/\



Mathematical proofs often feature wlog assumptions

Theorem (Schur's inequality).

Forallx,y,z > Oandn € N, we have
(=) = 2) + Y = 00— 2) + 2@ = D@ —y) 2 0




Mathematical proofs often feature wlog assumptions

Theorem (Schur's inequality).

Forallx,y,z > Oandn € N, we have
X =y)x=2)+y (y -0 -2 +2-—x2-y) 20

Proof.




Mathematical proofs often feature wlog assumptions

Theorem (Schur's inequality).

Forallx,y,z > Oandn € N, we have
X =y)x=2)+y (y -0 -2 +2-—x2-y) 20

Proof.
Without loss of generality, assume x > y > z and rearrange:




Mathematical proofs often feature wlog assumptions

Theorem (Schur's inequality).

Forallx,y,z > Oandn € N, we have
X =y)x=2)+y (y -0 -2 +2-—x2-y) 20

Proof.
Without loss of generality, assume x > y > z and rearrange:

x=N("x—2)=y"(y—2) +Z"(z—x)(z—y) >0

o m——




Mathematical proofs often feature wlog assumptions

Theorem (Schur's inequality).

Forallx,y,z > Oandn € N, we have
X =y)x=2)+y (y -0 -2 +2-—x2-y) 20

Proof.
Without loss of generality, assume x > y > z and rearrange:

x=N("x—2)=y"(y—2) +Z"(z—x)(z—y) >0
L

o m——




Mathematical proofs often feature wlog assumptions

Theorem (Schur's inequality).

Forallx,y,z > Oandn € N, we have
X =y)x=2)+y (y -0 -2 +2-—x2-y) 20

Proof.
Without loss of generality, assume x > y > z and rearrange:

x=N("x—2)=y"(y—2) +Z"(z—x)(z—y) >0
L

o m——




Mathematical proofs often feature wlog assumptions

Theorem (Schur's inequality).
Forallx,y,z > Oandn € N, we have

XX =YX =2 +y (-0 -2)+7(@=x)Nz=y) 20

v

Proof.
Without loss of generality, assume x > y > z and rearrange:

x=N("x—2)=y"(y—2) +Z"(z—x)(z—y) >0
L

o m——

_—




Mathematical proofs often feature wlog assumptions

Theorem (Schur's inequality).

Forallx,y,z > Oandn € N, we have
X =y)x=2)+y (y -0 -2 +2-—x2-y) 20

Proof.
Without loss of generality, assume x > y > z and rearrange:

x=N("x—2)=y"(y—2) +Z"(z—x)(z—y) >0

q|®ﬁ®'g

——




Mathematical proofs often feature wlog assumptions

Theorem (Schur's inequality).

Forallx,y,z > Oandn € N, we have
X =y)x=2)+y (y -0 -2 +2-—x2-y) 20

Proof.
Without loss of generality, assume x > y > z and rearrange:

x=N("x—2)=y"(y—2) +Z"(z—x)(z—y) >0

q|®ﬁ®'g

e e ——




- ntext of HOL
- ed wlog in the co

- OLs 2009) discuss

Harrison (I PH

Without Loss of Generality

John Harrison

S. Berghofer et al. (Eds.): TPHOL g 2009,
Springer—VerIag Berlin Heidelberg 2009

\




o .
arrison (TPHOLs 2009) discussed wlog in the context of HOL

te a general parametrized proof script that we could use

for all 6 cases with ditferent parameters. This sort of programming is exactly the kind

of thing that LCF-style systems (3] like HOL [2] are designed to make easy via thelr
‘metalanguage’ ML, and sometimes 1ts convenience makes 1t irresistible. However, this

approach is open 10 criticism on at least three grounds:

.t would be more elegant to Wrl

— Ugly/clumsy

— Inefficient
_ Not faithful to the informal proof.

_it Suggests

, b ) ine .

k(c _ a) (Zufbc and Integer >ql(l)ahty,
). A typical pTO()‘f mlcg)r}]:t:

eidelberg Qob; NCS 5674,

\;




o .
arrison (TPHOLs 2009) discussed wlog in the context of HOL

te a general parametrized proof script that we could use

for all 6 cases with ditferent parameters. This sort of programming is exactly the kind

of thing that LCF-style systems (3] like HOL [2] are designed to make easy via thelr
‘metalanguage’ ML, and sometimes 1ts convenience makes 1t irresistible. However, this

approach is open 10 criticism on at least three grounds:

.t would be more elegant to Wrl

— Ugly/clumsy

— Inefficient
_ Not faithful to the informal proof.

_it Suggests

, b ) ine .

k(c _ a) (Zufbc and Integer >ql(l)ahty,
). A typical pTO()‘f mlcg)r}]:t:

eidelberg Qob; NCS 5674,

\;




o .
arrison (TPHOLs 2009) discussed wlog in the context of HOL

te a general parametrized proof script that we could use

for all 6 cases with ditferent parameters. This sort of programming is exactly the kind

of thing that LCF-style systems (3] like HOL [2] are designed to make easy via thelr
‘metalanguage’ ML, and sometimes 1ts convenience makes 1t irresistible. However, this

approach is open 10 criticism on at least three grounds:

.t would be more elegant to Wrl

— Ugly/clumsy

— Inefficient
_ Not faithful to the informal proof.

_it Suggests

, b ) ine .

k(c _ a) (Zufbc and Integer >ql(l)ahty,
). A typical pTO()‘f mlcg)r}]:t:

eidelberg Qob; NCS 5674,

\;




o .
arrison (TPHOLs 2009) discussed wlog in the context of HOL

oof script that we could use
amming is exactly the kind
ed to make easy Vvia their
rresistible. However, this

write a general parametrized pr

for all 6 cases with ditferent parameters. This sort of progr
of thing that LCF-style systems (3] like HOL [2] are design
‘metalanguage’ ML, and sometimes 1ts convenience makes it 1

approach is open 10 criticism on at least three grounds:

.t would be more elegant to

— Ugly/clumsy
— Inefficient
_ Not faithful to the informal proot.
____—M—

M- OSS*OT 5en B g SOMTCTMes
i stnerality’, often abbrey: State that a cerga;
a brevla rtain assumptj
e - p IOn Can bP mMa 1 .

nn.EiS SUMPption at first cjehe tedto “WLOG* The -
book had intended that interpretation, 1t
ther cases are similar and are left to the
d use a general lo gical principle.
M

loss of generality’ 18 meant to conjure up. It the

would probably have <aid something like ‘the 0
reader’. So let us turn (o how we might formalize an

ity’ const
ructs
W s

) It’s not )
e can plays;j lmmedlate]y ob-

S.B b
crghofer et a]. ly suggest two possible

© Spring er_deag(Eds.): TPHOLS

Berlin Hejde or

\




o .
arrison (TPHOLs 2009) discussed wlog in the context of HOL

oof script that we could use
amming is exactly the kind
ed to make easy Vvia their
rresistible. However, this

write a general parametrized pr

for all 6 cases with ditferent parameters. This sort of progr
of thing that LCF-style systems (3] like HOL [2] are design
‘metalanguage’ ML, and sometimes 1ts convenience makes it 1

approach is open 10 criticism on at least three grounds:

.t would be more elegant to

— Ugly/clumsy
— Inefficient
_ Not faithful to the informal proot.
____—M—

M SO

| izzzfjgty” Ofteﬂ-ngte tflat a certain assumpg;

eQ v~ v tion at first cioke - 0 *'WLOG’ Tha - mption can be m~+ -
book had intended that interpretation, 1t
ther cases are similar and are left to the
d use a general lo gical principle.

M

loss of generality’ 18 meant to conjure up. It the

would probably have <aid something like ‘the 0
reader’. So let us turn (o how we might formalize an

ity’ const
ructs
W s

) It’s not )
e can plays;j lmmedlate]y ob-

S.B b
crghofer et a]. ly suggest two possible

© Spring er_deag(Eds.): TPHOLS

Berlin Hejde or

\




o .
arrison (TPHOLs 2009) discussed wlog in the context of HOL

oof script that we could use
amming is exactly the kind
ed to make easy Vvia their
rresistible. However, this

write a general parametrized pr

for all 6 cases with ditferent parameters. This sort of progr
of thing that LCF-style systems (3] like HOL [2] are design
‘metalanguage’ ML, and sometimes 1ts convenience makes it 1

approach is open 10 criticism on at least three grounds:

.t would be more elegant to

— Ugly/clumsy
— Inefficient
_ Not faithful to the informal proot.
____—M—

M SO

| izzzfjgty” Ofteﬂ-ngte tflat a certain assumpg;

eQ v~ v tion at first cioke - 0 *'WLOG’ Tha - mption can be m~+ -
book had intended that interpretation, 1t
ther cases are similar and are left to the
d use a general lo gical principle.

M

loss of generality’ 18 meant to conjure up. It the

would probably have <aid something like ‘the O
reader’. So let us turn (o how we might formalize an

ity’ const
ructs
W s

) It’s not )
e can plays;j lmmedlate]y ob-

S.B b
crghofer et a]. ly suggest two possible

© Spring er_deag(Eds.): TPHOLS

Berlin Hejde or

\




o .
arrison (TPHOLs 2009) discussed wlog in the context of HOL

ould be more elegant {0 write a general parametrized proof script that we could use
for all 6 cases with ditferent parameters. This sort of programming is exactly the kind

of thing that LCF-style systems (3] like HOL [2] are designed to make easy via thelr
‘metalanguage’ ML, and sometimes 1ts convenience makes 1t irresistible. However, this

approach is open 10 criticism on at least three grounds:

1t W

— Ugly/clumsy
— Inefficient
_ Not faithful to the informal proot.
S _____—M

d

loss of generality’ 18 meant to conjure up. It the book had intended that interpretation, 1t

would probably have <aid something like ‘the other cases are similar and are left to the
cht formalize and use a general lo gical principle.

reader’. So let us turn to how we mi
M‘

__"k*TaII’ We mi

ght say s s
der, the three numper Y something Jike.

[alal

I .
ml?scte < 15 a total or,
g have (at Jeasn

S AR |

|1

REAL__WLOG__3 _LE
- (Vxy z. PXY
(Vx v 2. X <=

:>(ny2.ny2)
M

—

z:>Pyxz/\szy)/\
y/\y<=z:>nyz)




Or we can use a simple and inefficient method




Or we can use a simple and inefficient method

X1, Xy, X3 € |

s bmm—

Jl sort with

Xa(1) S Xz2) S Xy (3)




Or we can use a simple and inefficient method

X1, Xy, X3 € |

e e

JJ sort with

Xp1) S Xgo) S X3y == P OChur(x, gy, X0y, Xz(3))
annsm— — actual
proof




Or we can use a simple and inefficient method

X1y Xy, X3 € | p': Schur(x, x,, x3)

revert the sort

JJ sort with 7 ﬂ as Schur
IS Invariant

Xp1) S Xgo) S X3y == P OChur(x, gy, X0y, Xz(3))
annsm— — actual
proof




S THERE A

BIGGER picture?










Symmetries form a group

Group G

 acarrierset G
e unitelemente : G

« multiplication * : G
. inverse(-)"!:G —

2 2
2

4 2
38 4

such that:

rerg=gre=g
+ (8FW) T k=g*(h*k)

. g*g =e

Schur's
inequality

Sym,; = {(123),(132), (213),
(231),(312),(321)}

S—— ——




Sets possesing a symmetry are captured with actions

(-action A

e acarrierset A
. amap @:G — A — A

such that:
e X=X

c @*h@®x=g® " ®x)

2 2
2

4 2
38 4

\
“ N
I®t=t

F®L=L
F®N({,x,t,) =NEF®L,x, F® 1)




For dependent sets, we employ indexed actions

A-action B
o acarrier family B : A — Set such that:
* dMap o ¢ @ y=1Yy

D:g:G)>x:A)->Bx—=>Bg®x) +» @"h® y=g®,,, (h®, y)

Schur's inequality

A=R’

T @ (X1, X, X3) = (X1 X2y X(3))

B(x;,x,,x3) = Schur(x;, x,, x3)

T & (p . ochur(x, x,, .X3)) — (q : Schur(xﬂ(l),xﬂ(z),xﬂ@)))




For dependent sets, we employ indexed actions

A-action B
o acarrier family B : A — Set such that:
e amMap re® Y=Yy
®:(g:G) > x:A)—->Bx—>Bg®x) (@ =~ "=2®,,, h® y)
Schur's inequality ‘ I
A = R3 \
T @ (x19x29 x3) — (xyz(l)a-x

Tree (¢ .

E(xl, XZ, .X3) — SChur(xl, .%% b)

T & (p . ochur(x, x,, .X3)) — (q : Schur(xﬂ(l),xﬂ(z),xﬂ@)))




Maps between symmetric sets are equivariant

equivariantmapf: Ae- B
f:(x:A) = Bx
g®x)=g®, flx)

2
2 f 4
4 2 > (a4
o 1 P
v Pgpe @ — v Pgge @ —

2
2
4
NN
4
4




Construction of w.l.0.g




Construction of w.l.0.g

Theorem
Take:

« agroup G, a G-action A, and an A-indexed action B
e g canoniser assignmentmapc:A = G
e amapf: (x: Imc®) = Bxsuch that

VeeG,xeImc®. (g®@xeImc®) = f(g®@x)=g®, f(x)

Then, there exists a unique equivariant map w . A @ B extending f, defined as:

w(x) = (cx)" ' ® flex @ x)




Can we reduce the set of canonical elements?

Imc® ={cx®x|xe€A)

T




Can we reduce the set of canonical elements?

Imc® ={cx®x|xe€A)

Fixc®={x€eA|cx®x=x)




Can we reduce the set of canonical elements?

Imc® ={cx®x|xe€A)

Fixc®={x€eA|cx®x=x)

Kerc={x€A|cx=¢e}




Can we reduce the set of canonical elements?

Imc® ={cx®x|xe€A)
UI
Fixc®={x€eA|lcx®x=x)

Kerc={x€A|cx=¢e}




Can we reduce the set of canonical elements?

Imc® ={cx®x|xe€A)
UI
FiXE_@E__:miXEA lcx ® x = X}
UI
Kerc={x€A|cx=¢e}




When do the converses hold?

Imc® ={cx®x|xe€A)
fl
Fixc®={x€eA|lcx®x=x)

Nl
Kerc={x€A|cx=¢e}




When do the converses hold?

Imc® ={cx®x|xe€A)

(Al < c®is iIdempotent

Fixc®={x€eA|cx®x=x)
fl
Kerc={x€A|cx=¢e}




When do the converses hold?

Imc® ={cx®x|xe€A)

(Al < c®is iIdempotent

Fixc®={x€eA|cx®x=x)

()| < Ais semi-regular

Kerc={x€A|cx=¢e}




When do the converses hold?

Imc®={cx®@x|xe€A)
fl
Kerc={x€A|cx=e}




When do the converses hold?

Imc®={cx®@x|xe€A)

()l @ Vx,clecx® x) =e

Kerc={x€A|cx=e}




When do the converses hold?

Imc®={cx®@x|xe€A)

()l @ Vx,clecx® x) =e

Kerc={x€A|cx=e}




Our principle implies Harrison's tactics

(]
e
\t“
=,
-
@,
.
)
C
[
|l

R




Our principle implies Harrison's tactics

P has an Syms-indexed action

—|

R




Our principle implies Harrison's tactics

P has an Syms-indexed action

|

R




What's next?




What's next?

Jelelp

e More examples
e IMmplementation

e eI



What's next?

Jelelp

e More examples
e IMmplementation

e i —— maee e

later
e efficiency
e programming language
e symmetric data types




